Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 602(7898): 595-600, 2022 02.
Article in English | MEDLINE | ID: mdl-35197618

ABSTRACT

The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase1-4. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light-matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales5. Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response6,7. Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic1,3,4 and hexagonal8,9 crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals10, many common oxides11 and organic crystals12, greatly expanding the material base and extending design opportunities for compact photonic devices.

2.
Immunity ; 47(6): 1100-1113.e6, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29262349

ABSTRACT

Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a+Eomes+ subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a+Eomes+ NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy.


Subject(s)
Abortion, Habitual/immunology , Adoptive Transfer , Carrier Proteins/metabolism , Cytokines/metabolism , Fetal Development/immunology , Fetal Growth Retardation/prevention & control , Intercellular Signaling Peptides and Proteins/metabolism , Killer Cells, Natural/transplantation , Abortion, Habitual/genetics , Abortion, Habitual/pathology , Adult , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cellular Microenvironment , Cytokines/genetics , Cytokines/immunology , Decidua/immunology , Decidua/pathology , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/immunology , Fetal Growth Retardation/pathology , Fetus , Gene Expression Regulation, Developmental , HLA-G Antigens/genetics , HLA-G Antigens/immunology , Humans , Integrin alpha1/genetics , Integrin alpha1/immunology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Leukocyte Immunoglobulin-like Receptor B1/genetics , Leukocyte Immunoglobulin-like Receptor B1/immunology , Mice , Mice, Inbred C57BL , Pregnancy , Signal Transduction , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology
3.
Proc Natl Acad Sci U S A ; 120(39): e2307816120, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37725650

ABSTRACT

Hydrogel adhesion that can be easily modulated in magnitude, space, and time is desirable in many emerging applications ranging from tissue engineering and soft robotics to wearable devices. In synthetic materials, these complex adhesion behaviors are often achieved individually with mechanisms and apparatus that are difficult to integrate. Here, we report a universal strategy to embody multifaceted adhesion programmability in synthetic hydrogels. By designing the surface network topology of a hydrogel, supramolecular linkages that result in contrasting adhesion behaviors are formed on the hydrogel interface. The incorporation of different topological linkages leads to dynamically tunable adhesion with high-resolution spatial programmability without alteration of bulk mechanics and chemistry. Further, the association of linkages enables stable and tunable adhesion kinetics that can be tailored to suit different applications. We rationalize the physics of polymer chain slippage, rupture, and diffusion at play in the emergence of the programmable behaviors. With the understanding, we design and fabricate various soft devices such as smart wound patches, fluidic channels, drug-eluting devices, and reconfigurable soft robotics. Our study presents a simple and robust platform in which adhesion controllability in multiple aspects can be easily integrated into a single design of a hydrogel network.

4.
Chem Rev ; 123(12): 7585-7654, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37224438

ABSTRACT

The topological properties of an object, associated with an integer called the topological invariant, are global features that cannot change continuously but only through abrupt variations, hence granting them intrinsic robustness. Engineered metamaterials (MMs) can be tailored to support highly nontrivial topological properties of their band structure, relative to their electronic, electromagnetic, acoustic and mechanical response, representing one of the major breakthroughs in physics over the past decade. Here, we review the foundations and the latest advances of topological photonic and phononic MMs, whose nontrivial wave interactions have become of great interest to a broad range of science disciplines, such as classical and quantum chemistry. We first introduce the basic concepts, including the notion of topological charge and geometric phase. We then discuss the topology of natural electronic materials, before reviewing their photonic/phononic topological MM analogues, including 2D topological MMs with and without time-reversal symmetry, Floquet topological insulators, 3D, higher-order, non-Hermitian and nonlinear topological MMs. We also discuss the topological aspects of scattering anomalies, chemical reactions and polaritons. This work aims at connecting the recent advances of topological concepts throughout a broad range of scientific areas and it highlights opportunities offered by topological MMs for the chemistry community and beyond.

5.
Chembiochem ; 25(16): e202400390, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39031725

ABSTRACT

Hydrogen polysulfides (H2Sn) have emerged as critical physiological mediators that are closely associated with hydrogen sulfide (H2S) signaling. H2Sn exhibit greater nucleophilicity than H2S while also having electrophilic characteristics, enabling unique activities such as protein S-persulfidation. Despite their physiological importance, mechanisms and reactivities of H2Sn remain inadequately explored due to their inherent instability in aqueous environments. Consequently, there is a need to develop biocompatible methods for controlled H2Sn generation to elucidate their behaviors in biological contexts. Herein, we present a dual enzyme system (containing glucose oxidase (GOx) and chloroperoxidase (CPO)) with thioglucose as the substrate to facilitate the controlled release of H2Sn. Fluorescence measurements with SSP4 and the trapping studies allowed us to confirm the production of H2Sn. Such a method may be useful in elucidating the reactivity of hydrogen polysulfides in biological systems as well as provide a potential delivery of H2Sn to target sites for biological applications.


Subject(s)
Chloride Peroxidase , Glucose Oxidase , Sulfides , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Chloride Peroxidase/metabolism , Chloride Peroxidase/chemistry , Sulfides/chemistry , Sulfides/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/chemistry , Aspergillus niger/enzymology
6.
Phys Rev Lett ; 132(26): 263803, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38996284

ABSTRACT

Polar dielectrics with low crystal symmetry and sharp phonon resonances can support hyperbolic shear polaritons, which are highly confined surface modes with frequency-dependent optical axes and asymmetric dissipation features. So far, these modes have been observed only in bulk natural materials at midinfrared frequencies, with properties limited by available crystal geometries and phonon resonance strength. Here, we introduce hyperbolic shear metasurfaces, which are ultrathin engineered surfaces supporting hyperbolic surface modes with symmetry-tailored axial dispersion and loss redistribution that can maximally enhance light-matter interactions. By engineering effective shear phenomena in these engineered surfaces, we demonstrate geometry-controlled, ultraconfined, low-loss hyperbolic surface waves with broadband Purcell enhancements applicable across a broad range of the electromagnetic spectrum.

7.
Phys Rev Lett ; 132(19): 197202, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804947

ABSTRACT

The higher-order topological phases have attracted intense attention in the past years, which reveals various intriguing topological properties. Meanwhile, the enrichment of group symmetries with projective symmetry algebras redefines the fundamentals of topological matter and makes Stiefel-Whitney (SW) classes in classical wave systems possible. Here, we report the experimental realization of higher-order topological nodal loop semimetal in an acoustic system and obtain the inherent SW topological invariants. In stark contrast to higher-order topological semimetals relating to complex vector bundles, the hinge and surface states in the SW topological phase are protected by two distinctive SW topological charges relevant to real vector bundles. Our findings push forward the studies of SW class topology in classical wave systems, which also show possibilities in robust high-Q-resonance-based sensing and energy harvesting.

8.
Langmuir ; 40(21): 11087-11097, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38718184

ABSTRACT

Photocatalytic technology is an attractive option for environmental remediation because of its green and sustainable nature. However, the inefficient utilization of solar energy and powder morphology currently impede its practical application. Here, we designed a floatable photocatalyst by anchoring 0D Cu2(OH)PO4 (CHP) nanoparticles on 2D graphene to construct 0D/2D CHP/reduced graphene oxide (rGO) aerogels. The CHP/rGO aerogels have interconnected mesopores that provide a large surface area, promoting particle dispersion and increasing the number of active sites. Moreover, the optical response of the CHP/rGO aerogel has been significantly expanded to cover the full spectrum of the solar light. Notably, the 20%CHP/rGO aerogel displayed a high degradation rate (k = 0.178 min-1) taking methylene blue (MB) as a model pollutant under light irradiation (λ > 420 nm). The enhanced photocatalytic activity is ascribed to the rapid electron transfer in the CHP/rGO heterostructures, as supported by the DFT theoretical calculations. Our research highlights the utilization of full spectrum responsive photocatalysts for the elimination of organic pollutants from wastewater under solar light irradiation, as well as the potential for catalyst recovery using floatable aerogels to meet industrial requirements.

9.
Dermatol Surg ; 50(10): 926-930, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38748664

ABSTRACT

BACKGROUND: Alopecia significantly affects the mental health and social relationship of women since childbearing age, highlighting the need for a safe, effective, and convenient treatment. METHODS: The authors have conducted a prospective self-controlled trial involving 15 female patients at childbearing age with alopecia. These patients received a subcutaneous scalp injection of platelet-rich plasma once every 4 weeks for 3 treatments in total. Outcome measurements were included below: changes in hair density (hair/cm 2 ), hair follicle density (hair follicle/cm 2 ), and overall photographic assessment (improved or not) at 4, 12, and 24 weeks right after the first treatment. RESULTS: Comparing the photographs taken before and after the intervention, 67% of patients' hair density increased from 151 ± 39.82 hairs/cm 2 (preintervention) to 170.96 ± 37.14 hairs/cm 2 (at 24-week follow-up), representing an approximate increase of 19 hairs/cm 2 . Meanwhile, hair follicle density increased by approximately 15 follicles/cm 2 after 24 weeks since the first treatment, rising from 151.04 ± 41.99 follicles/cm 2 to 166.72 ± 37.13 follicles/cm 2 . The primary adverse reactions observed were local swelling and pain due to injections. CONCLUSION: Local injection of nonactivated platelet-rich plasma with low leukocytes concentration could be an effective strategy to alleviate alopecia symptoms in female patients.


Subject(s)
Alopecia , Platelet-Rich Plasma , Humans , Female , Alopecia/therapy , Prospective Studies , Adult , Hair Follicle , Young Adult , Injections, Subcutaneous , Treatment Outcome , Scalp , Hair
10.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34413190

ABSTRACT

The properties of topological systems are inherently tied to their dimensionality. Indeed, higher-dimensional periodic systems exhibit topological phases not shared by their lower-dimensional counterparts. On the other hand, aperiodic arrays in lower-dimensional systems (e.g., the Harper model) have been successfully employed to emulate higher-dimensional physics. This raises a general question on the possibility of extended topological classification in lower dimensions, and whether the topological invariants of higher-dimensional periodic systems may assume a different meaning in their lower-dimensional aperiodic counterparts. Here, we demonstrate that, indeed, for a topological system in higher dimensions one can construct a one-dimensional (1D) deterministic aperiodic counterpart which retains its spectrum and topological characteristics. We consider a four-dimensional (4D) quantized hexadecapole higher-order topological insulator (HOTI) which supports topological corner modes. We apply the Lanczos transformation and map it onto an equivalent deterministic aperiodic 1D array (DAA) emulating 4D HOTI in 1D. We observe topological zero-energy zero-dimensional (0D) states of the DAA-the direct counterparts of corner states in 4D HOTI and the hallmark of the multipole topological phase, which is meaningless in lower dimensions. To explain this paradox, we show that higher-dimension invariant, the multipole polarization, retains its quantization in the DAA, yet changes its meaning by becoming a nonlocal correlator in the 1D system. By introducing nonlocal topological phases of DAAs, our discovery opens a direction in topological physics. It also unveils opportunities to engineer topological states in aperiodic systems and paves the path to application of resonances associates with such states protected by nonlocal symmetries.

11.
Nano Lett ; 23(23): 11252-11259, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37948605

ABSTRACT

Modulating anisotropic phonon polaritons (PhPs) can open new avenues in infrared nanophotonics. Promising PhP dispersion engineering through polariton hybridization has been demonstrated by coupling gated graphene to single-layer α-MoO3. However, the mechanism underlying the gate-dependent modulation of hybridization has remained elusive. Here, using IR nanospectroscopic imaging, we demonstrate active modulation of the optical response function, quantified in measurements of gate dependence of wavelength, amplitude, and dissipation rate of the hybrid plasmon-phonon polaritons (HPPPs) in both single-layer and twisted bilayer α-MoO3/graphene heterostructures. Intriguingly, while graphene doping leads to a monotonic increase in HPPP wavelength, amplitude and dissipation rate show transition from an initially anticorrelated decrease to a correlated increase. We attribute this behavior to the intricate interplay of gate-dependent components of the HPPP complex momentum. Our results provide the foundation for active polariton control of integrated α-MoO3 nanophotonics devices.

12.
Angew Chem Int Ed Engl ; 63(6): e202317487, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38100749

ABSTRACT

Hydrogen sulfide (H2 S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2 S overproduction has been linked to a variety of disease states and therefore, H2 S-depleting agents, such as scavengers, are needed to understand the significance of H2 S-based therapy. It is known that elevated H2 S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2 S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2 S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2 S/H2 O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2 S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2 S removal. These Se-based scavengers can be useful tools for understanding H2 S/ROS regulations.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Selenium , Reactive Oxygen Species , Oxidative Stress , Hydrogen Peroxide/pharmacology
13.
J Am Chem Soc ; 145(1): 277-287, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36548022

ABSTRACT

Redox signaling molecules include a number of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). These molecules work collectively in the regulation of many physiological processes. Understanding the crosstalk mechanisms in these signaling molecules is important but challenging. The development of donor compounds of ROS/RNS/RSS will aid the advances in this field. While many donors that can release one ROS/RNS/RSS have been developed, dual donors that can release two signaling species and facilitate their crosstalk studies are still very rare. Those limited examples lack the ability to precisely control the timing of two releases. In this work, a 2-methoxy-6-naphthacyl-derived tertiary SNO compound, Naph-SNO, was designed and evaluated as the dual donor for NO and H2S2. The 2-methoxy-6-naphthacyl structure was demonstrated to be a novel photoremovable protecting group that could directly uncage C-S bonds. Under the irradiation of lights with different wavelengths (visible or UV), Naph-SNO could release NO and H2S2 in a stepwise manner, or simultaneously (i.e., likely producing the crosstalk product HSNO/HSSNO). In addition, the release of payloads from the donor also produced an end product with blue fluorescence. Therefore, the release process could be easily monitored in "real time." This controllable photo-triggered release strategy has the potential to be used in the design of other RNS/RSS dual donors.


Subject(s)
Signal Transduction , Sulfur , Reactive Oxygen Species , Delayed-Action Preparations , Oxidation-Reduction , Sulfur/chemistry
14.
Chembiochem ; 23(13): e202200101, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35344248

ABSTRACT

C-Nitrosothioformamide was demonstrated to be a donor template for dual release of HNO and COS triggered by a retro-Diels-Alder reaction. COS is an H2 S precursor in the presence of carbonic anhydrase. This process produces HNO and H2 S in a slow but steady manner. As such, the direct reaction between HNO and H2 S under this situation appears to be minor. This may provide a useful tool for studying the synergistic effects of HNO and H2 S.


Subject(s)
Carbonic Anhydrases , Nitrogen Oxides , Nitric Oxide
15.
Acc Chem Res ; 54(20): 3968-3978, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34607436

ABSTRACT

Reactive sulfur species (RSS) play regulatory roles in many physiological and pathological processes. Since the discovery of hydrogen sulfide (H2S) as a nitric oxide (NO)-like signaling molecule, understanding the chemical biology of H2S and H2S-related RSS, such as hydropersulfides (RSSH) and polysulfides (H2Sn), has become a fast-growing research field. However, the research on these RSS has technical difficulties due to their high reactivity and instability. To solve this problem, considerable efforts have been put into the development of unique RSS releasing compounds (e.g., donors) or in situ RSS generation systems. This Account tells the story of our research group's effort to develop novel RSS donors.We began with exploring molecular entities that were stable by themselves but could be triggered by biologically relevant factors, such as pH, thiols, light, or enzymes, to release H2S in a controllable fashion. These studies led to the discovery of a series of novel H2S donors. We later expanded our interests to other RSS including RSSH, H2Sn, RSeSH, HSNO, RSOH, etc. The fundamental chemistry of these RSS was studied and applied to the development of the corresponding donors. In addition to small molecule donors, we also worked on H2S-releasing biomaterials and their applications. This Account summarizes our work and systematically explains how each RSS donor template was proposed and evaluated. The Account covers the following key points: (1) rational chemistry design of each RSS donor template, (2) evaluation and mechanistic insights of each donor template, and (3) properties and biological applications of the donors.


Subject(s)
Sulfur/metabolism , Molecular Structure , Sulfur/chemistry
16.
Bioorg Med Chem ; 72: 116977, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36037626

ABSTRACT

Natural products (NPs) are always the important sources in the field of drug discovery, among which spirolactone-type and enmein-type compounds exhibit a wide range of biological activities, especially anti-tumor activity. Based on previous studies, the spirolactone-type and enmein-type compounds could be derived from natural oridonin (1) by several chemical reactions. Herein, a series of novel spirolactone-type and enmein-type derivatives with different aryl allyl ester substitutions at their C-14 hydroxyl group were designed and synthesized. The anti-tumor activity results showed that most of the compounds exhibited better anti-proliferative activities than parent compound oridonin, and the most potent compound had an IC50 value of 0.40 µM in K562 cells. Further mechanistic studies revealed that the optimal compound could arrest K562 cells at G2/M phase by inhibiting cdc-2, cdc-25c and cyclin B1 expression. In addition, the optimal compound induced apoptosis in K562 cells through increasing ROS production and depolarizing mitochondrial membrane potential. Collectively, these valuable results suggested that the most potent compound could be an anti-tumor agent candidate and is worthy of further investigation.


Subject(s)
Antineoplastic Agents , Biological Products , Diterpenes, Kaurane , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Biological Products/pharmacology , Cell Line, Tumor , Cell Proliferation , Cyclin B1 , Diterpenes , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/pharmacology , Esters/pharmacology , Humans , Reactive Oxygen Species , Spironolactone/chemistry , Spironolactone/pharmacology , Structure-Activity Relationship
17.
J Am Chem Soc ; 143(33): 13325-13332, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34383487

ABSTRACT

H2S and H2O2 are two redox regulating molecules that play important roles in many physiological and pathological processes. While each of them has distinct biosynthetic pathways and signaling mechanisms, the crosstalk between these two species is also known to cause critical biological responses such as protein S-persulfidation. So far, many chemical tools for the studies of H2S and H2O2 have been developed, such as the donors and sensors for H2S and H2O2. However, these tools are normally targeting single species (e.g., only H2S or only H2O2). As such, the crosstalk and synergetic effects between H2S and H2O2 have hardly been studied with those tools. In this work, we report a unique H2S/H2O2 dual donor system by employing 1-thio-ß-d-glucose and glucose oxidase (GOx) as the substrates. This enzymatic system can simultaneously produce H2S and H2O2 in a slow and controllable fashion, without generating any bio-unfriendly byproducts. This system was demonstrated to cause efficient S-persulfidation on proteins. In addition, we expanded the system to thiolactose and thioglucose-disulfide; therefore, additional factors (ß-galactosidase and cellular reductants) could be introduced to further control the release of H2S/H2O2. This dual release system should be useful for future research on H2S and H2O2.


Subject(s)
Glucose Oxidase/metabolism , Glucose/analogs & derivatives , Hydrogen Peroxide/metabolism , Hydrogen Sulfide/metabolism , Protein S/metabolism , Glucose/chemistry , Glucose/metabolism , Glucose Oxidase/chemistry , Humans , Hydrogen Peroxide/chemistry , Hydrogen Sulfide/chemistry , Protein S/chemistry
18.
Nat Mater ; 18(2): 113-120, 2019 02.
Article in English | MEDLINE | ID: mdl-30598540

ABSTRACT

Topological systems are inherently robust to disorder and continuous perturbations, resulting in dissipation-free edge transport of electrons in quantum solids, or reflectionless guiding of photons and phonons in classical wave systems characterized by topological invariants. Recently, a new class of topological materials characterized by bulk polarization has been introduced, and was shown to host higher-order topological corner states. Here, we demonstrate theoretically and experimentally that 3D-printed two-dimensional acoustic meta-structures can possess nontrivial bulk topological polarization and host one-dimensional edge and Wannier-type second-order zero-dimensional corner states with unique acoustic properties. We observe second-order topological states protected by a generalized chiral symmetry of the meta-structure, which are localized at the corners and are pinned to 'zero energy'. Interestingly, unlike the 'zero energy' states protected by conventional chiral symmetry, the generalized chiral symmetry of our three-atom sublattice enables their spectral overlap with the continuum of bulk states without leakage. Our findings offer possibilities for advanced control of the propagation and manipulation of sound, including within the radiative continuum.

19.
J Neurooncol ; 148(2): 245-258, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32405996

ABSTRACT

OBJECTIVE: Optical molecular imaging technology that indiscriminately detects intracranial glioblastoma (GBM) can help neurosurgeons effectively remove tumor masses. Transferrin receptor 1 (TfR 1) is a diagnostic and therapeutic target in GBM. A TfR 1-targeted peptide, CRTIGPSVC (CRT), was shown to cross the blood brain barrier (BBB) and accumulate at high levels in GBM tissues. In this study, we synthesized a TfR 1-targeted near-infrared fluorescent (NIRF) probe, Cy5-CRT, for identifying the GBM tissue margin in mouse models. METHODS: We initially confirmed the overexpression of TfR 1 in GBM and the tumor-specific homing ability of Cy5-CRT in subcutaneous and orthotopic GBM mouse models. We then examined the feasibility of Cy5-CRT for identifying the tumor margin in orthotopic GBM xenografts. Finally, we compared Cy5-CRT with the clinically used fluorescein sodium in identifying tumor margins. RESULTS: Cy5-CRT specifically accumulated in GBM tissues and detected the tumor burden with exceptional contrast in mice with orthotopic GBM, enabling fluorescence-guided GBM resection under NIRF live imaging conditions. Importantly, Cy5-CRT recognized the GBM tissue margin more clearly than fluorescein sodium. CONCLUSIONS: The TfR 1-targeted optical probe Cy5-CRT specifically differentiates tumor tissues from the surrounding normal brain with high sensitivity, indicating its potential application for the precise surgical removal of GBM.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/metabolism , Glioma/pathology , Microscopy, Fluorescence/methods , Optical Imaging/methods , Receptors, Transferrin/metabolism , Animals , Carbocyanines , Cell Line, Tumor , Disease Models, Animal , Fluorescein , Fluorescent Dyes , Mice , Xenograft Model Antitumor Assays
20.
Nano Lett ; 19(1): 318-330, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30556699

ABSTRACT

Afterglow imaging through the collection of persistent luminescence after the stopping of light excitation holds enormous promise for advanced biomedical uses. However, efficient near-infrared (NIR)-emitting afterglow luminescent materials and probes (particularly the organic and polymeric ones) are still very limited, and their in-depth biomedical applications such as precise image-guided cancer surgery are rarely reported. Here, we design and synthesize a NIR afterglow luminescent nanoparticle with aggregation-induced emission (AIE) characteristics (named AGL AIE dots). It is demonstrated that the AGL AIE dots emit rather-high NIR afterglow luminescence persisting over 10 days after the stopping of a single excitation through a series of processes occurring in the AIE dots, including singlet oxygen production by AIE luminogens (AIEgens), Schaap's dioxetane formation, chemiexcitation by dioxetane decomposition, and energy transfer to NIR-emitting AIEgens. The animal studies reveal that the AGL AIE dots have the innate property of fast afterglow signal quenching in normal tissues, including the liver, spleen, and kidney. After the intravenous injection of AGL AIE dots into peritoneal carcinomatosis bearing mice, the tumor-to-liver ratio of afterglow imaging is nearly 100-fold larger than that for fluorescence imaging. The ultrahigh tumor-to-liver signal ratio, together with low afterglow background noise, enables AGL AIE dots to give excellent performance in precise image-guided cancer surgery.


Subject(s)
Liver Neoplasms/surgery , Liver/surgery , Nanoparticles/chemistry , Surgery, Computer-Assisted/methods , Animals , Fluorescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Liver/pathology , Liver Neoplasms/pathology , Mice , Nanoparticles/administration & dosage , Optical Imaging , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL