Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37739089

ABSTRACT

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Bromodomain Containing Proteins , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Gemcitabine , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Smad2 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Eur Respir J ; 63(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38212075

ABSTRACT

The pleural lining of the thorax regulates local immunity, inflammation and repair. A variety of conditions, both benign and malignant, including pleural mesothelioma, can affect this tissue. A lack of knowledge concerning the mesothelial and stromal cells comprising the pleura has hampered the development of targeted therapies. Here, we present the first comprehensive single-cell transcriptomic atlas of the human parietal pleura and demonstrate its utility in elucidating pleural biology. We confirm the presence of known universal fibroblasts and describe novel, potentially pleural-specific, fibroblast subtypes. We also present transcriptomic characterisation of multiple in vitro models of benign and malignant mesothelial cells, and characterise these through comparison with in vivo transcriptomic data. While bulk pleural transcriptomes have been reported previously, this is the first study to provide resolution at the single-cell level. We expect our pleural cell atlas will prove invaluable to those studying pleural biology and disease. It has already enabled us to shed light on the transdifferentiation of mesothelial cells, allowing us to develop a simple method for prolonging mesothelial cell differentiation in vitro.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Pleura/pathology , Mesothelioma/genetics , Mesothelioma/pathology , Mesothelioma, Malignant/pathology , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Gene Expression Profiling
3.
Biopolymers ; 103(8): 432-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25546738

ABSTRACT

Don Crothers, Mikael Kubista, Jon Widom, and their teams have been first to look for strong nucleosomes, in a bid to reveal the nucleosome positioning pattern(s) carried by the nucleosome DNA sequences. They were first to demonstrate that the nucleosome stability correlates with 10-11 base sequence periodicity, and that the strong nucleosomes localize preferentially in centromeres. This review describes these findings and their connection to recent discovery of the strong nucleosomes (SNs) with visibly periodic nucleosome DNA sequences.


Subject(s)
Nucleosomes/metabolism , Centromere/chemistry , Centromere/genetics , Centromere/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Humans , Nucleosomes/chemistry , Nucleosomes/genetics , Sequence Analysis, DNA
4.
Protein Cell ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758030

ABSTRACT

Tissue formation and organ homeostasis is achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFß signalling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms how cell fate specification is interconnected to cell cycle dynamics and provides insight to autonomous circuitries governing tissue self-formation.

5.
Nat Commun ; 15(1): 3580, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678032

ABSTRACT

The lethality, chemoresistance and metastatic characteristics of cancers are associated with phenotypically plastic cancer stem cells (CSCs). How the non-cell autonomous signalling pathways and cell-autonomous transcriptional machinery orchestrate the stem cell-like characteristics of CSCs is still poorly understood. Here we use a quantitative proteomic approach for identifying secreted proteins of CSCs in pancreatic cancer. We uncover that the cell-autonomous E2F1/4-pRb/RBL2 axis balances non-cell-autonomous signalling in healthy ductal cells but becomes deregulated upon KRAS mutation. E2F1 and E2F4 induce whereas pRb/RBL2 reduce WNT ligand expression (e.g. WNT7A, WNT7B, WNT10A, WNT4) thereby regulating self-renewal, chemoresistance and invasiveness of CSCs in both PDAC and breast cancer, and fibroblast proliferation. Screening for epigenetic enzymes identifies GCN5 as a regulator of CSCs that deposits H3K9ac onto WNT promoters and enhancers. Collectively, paracrine signalling pathways are controlled by the E2F-GCN5-RB axis in diverse cancers and this could be a therapeutic target for eliminating CSCs.


Subject(s)
E2F1 Transcription Factor , E2F4 Transcription Factor , Neoplastic Stem Cells , Pancreatic Neoplasms , Paracrine Communication , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , E2F4 Transcription Factor/metabolism , E2F4 Transcription Factor/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Female , Cell Proliferation , Mice , Signal Transduction , Drug Resistance, Neoplasm/genetics
6.
Cell Rep ; 42(9): 113146, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37725511

ABSTRACT

The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/ß-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.


Subject(s)
Body Patterning , Retinoblastoma Protein , Signal Transduction , Humans , Cell Cycle , Cell Differentiation , Cell Division , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
7.
Nat Commun ; 14(1): 405, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36697417

ABSTRACT

Stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the epigenetic events and molecular mechanisms occurring between consecutive cell divisions have been insufficiently studied due to technical limitations. Here, using the FUCCI reporter we developed a cell-cycle synchronised human pluripotent stem cell (hPSC) differentiation system for uncovering epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We observed that transcription of key differentiation markers occurs before cell division, while chromatin accessibility analyses revealed the early inhibition of alternative cell fates. We found that Activator protein-1 members controlled by p38/MAPK signalling are necessary for inducing endoderm while blocking cell fate shifting toward mesoderm, and that enhancers are rapidly established and decommissioned between different cell divisions. Our study has practical biomedical utility for producing hPSC-derived patient-specific cell types since p38/MAPK induction increased the differentiation efficiency of insulin-producing pancreatic beta-cells.


Subject(s)
Pluripotent Stem Cells , Humans , Cell Differentiation/genetics , Gene Expression Regulation , Antigens, Differentiation/metabolism , Epigenesis, Genetic , Endoderm
8.
Nat Commun ; 14(1): 5685, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709746

ABSTRACT

Pancreatic cancer (PC), one of the most aggressive and life-threatening human malignancies, is known for its resistance to cytotoxic therapies. This is increasingly ascribed to the subpopulation of undifferentiated cells, known as pancreatic cancer stem cells (PCSCs), which display greater evolutionary fitness than other tumor cells to evade the cytotoxic effects of chemotherapy. PCSCs are crucial for tumor relapse as they possess 'stem cell-like' features that are characterized by self-renewal and differentiation. However, the molecular mechanisms that maintain the unique characteristics of PCSCs are poorly understood. Here, we identify the histone methyltransferase KMT2A as a physical binding partner of an RNA polymerase-associated PHF5A-PHF14-HMG20A-RAI1 protein subcomplex and an epigenetic regulator of PCSC properties and functions. Targeting the protein subcomplex in PCSCs with a KMT2A-WDR5 inhibitor attenuates their self-renewal capacity, cell viability, and in vivo tumorigenicity.


Subject(s)
Pancreas , Pancreatic Neoplasms , Humans , Neoplastic Stem Cells , Pancreatic Neoplasms/genetics , Research Personnel , Histone Methyltransferases , High Mobility Group Proteins , Trans-Activators , RNA-Binding Proteins , Intracellular Signaling Peptides and Proteins
9.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909530

ABSTRACT

The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodelling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signalling pathway. Inhibition and genetic ablation of BDR9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumours from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.

10.
Nat Commun ; 12(1): 117, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33402692

ABSTRACT

Nasopharyngeal cancer (NPC), endemic in Southeast Asia, lacks effective diagnostic and therapeutic strategies. Even in high-income countries the 5-year survival rate for stage IV NPC is less than 40%. Here we report high somatostatin receptor 2 (SSTR2) expression in multiple clinical cohorts comprising 402 primary, locally recurrent and metastatic NPCs. We show that SSTR2 expression is induced by the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) via the NF-κB pathway. Using cell-based and preclinical rodent models, we demonstrate the therapeutic potential of SSTR2 targeting using a cytotoxic drug conjugate, PEN-221, which is found to be superior to FDA-approved SSTR2-binding cytostatic agents. Furthermore, we reveal significant correlation of SSTR expression with increased rates of survival and report in vivo uptake of the SSTR2-binding 68Ga-DOTA-peptide radioconjugate in PET-CT scanning in a clinical trial of NPC patients (NCT03670342). These findings reveal a key role in EBV-associated NPC for SSTR2 in infection, imaging, targeted therapy and survival.


Subject(s)
Epstein-Barr Virus Infections , Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplasm Recurrence, Local , Receptors, Somatostatin , Viral Matrix Proteins , Animals , Female , Humans , Male , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/mortality , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/growth & development , Herpesvirus 4, Human/pathogenicity , Host-Pathogen Interactions/genetics , Lymphatic Metastasis , Mice, Nude , Molecular Targeted Therapy , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/virology , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/virology , NF-kappa B/genetics , NF-kappa B/metabolism , Octreotide/pharmacology , Positron Emission Tomography Computed Tomography , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Signal Transduction , Survival Analysis , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Xenograft Model Antitumor Assays
11.
J Med Chem ; 62(20): 9008-9025, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31550156

ABSTRACT

Modifications of histone tails, including lysine/arginine methylation, provide the basis of a "chromatin or histone code". Proteins that contain "reader" domains can bind to these modifications and form specific effector complexes, which ultimately mediate chromatin function. The spindlin1 (SPIN1) protein contains three Tudor methyllysine/arginine reader domains and was identified as a putative oncogene and transcriptional coactivator. Here we report a SPIN1 chemical probe inhibitor with low nanomolar in vitro activity, exquisite selectivity on a panel of methyl reader and writer proteins, and with submicromolar cellular activity. X-ray crystallography showed that this Tudor domain chemical probe simultaneously engages Tudor domains 1 and 2 via a bidentate binding mode. Small molecule inhibition and siRNA knockdown of SPIN1, as well as chemoproteomic studies, identified genes which are transcriptionally regulated by SPIN1 in squamous cell carcinoma and suggest that SPIN1 may have a role in cancer related inflammation and/or cancer metastasis.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , Microtubule-Associated Proteins/metabolism , Molecular Probes/chemistry , Phosphoproteins/metabolism , Tudor Domain , Cell Cycle Proteins/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Microtubule-Associated Proteins/chemistry , Phosphoproteins/chemistry , Protein Conformation
12.
J Biomol Struct Dyn ; 34(2): 448-51, 2016.
Article in English | MEDLINE | ID: mdl-25761985

ABSTRACT

The bulk of strong nucleosomes (SNs, with visibly periodic DNA sequences) is described by consensus pattern of 5 or 6 base runs of purines alternating with similar runs of pyrimidines - RR/YY SNs. Yet, the strongest known nucleosome positioning sequence, the 601 clone of Lowary and Widom, is rather periodic repetition of TA dinucleotides following one another every 10 bases. We located "601"-like TA-periodic sequences in the genome of A. thaliana. Several families of such sequences are discovered repeating almost exclusively in centromeres. Thus, while A. thaliana SNs of RR/YY type have strong affinity to pericentromeric regions, as it has been previously found, the SNs of TA periodic type concentrate rather in centromeres.


Subject(s)
Arabidopsis/genetics , Centromere/metabolism , Nucleosomes/metabolism , Base Pairing , Base Sequence , Chromosomes, Plant/genetics , DNA, Satellite/genetics , Molecular Sequence Data , Repetitive Sequences, Nucleic Acid/genetics
13.
J Biomol Struct Dyn ; 33(7): 1558-66, 2015.
Article in English | MEDLINE | ID: mdl-25187186

ABSTRACT

Recently developed latest version of the sequence-directed single-base resolution nucleosome mapping reveals existence of strong nucleosomes and chromatin columnar structures (columns). Broad application of this simple technique for further studies of chromatin and chromosome structure requires some basic understanding as to how it works and what information it affords. The paper provides such an introduction to the method. The oscillating maps of singular nucleosomes, of short and long oligonucleosome columns, are explained, as well as maps of chromatin on satellite DNA and occurrences of counter-phase (antiparallel) nucleosome neighbors.


Subject(s)
Nucleosomes/chemistry , Animals , Base Sequence , Chromatin/chemistry , Chromatin/metabolism , Nucleosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL