Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Hum Genet ; 140(5): 747-760, 2021 May.
Article in English | MEDLINE | ID: mdl-33221945

ABSTRACT

Despite the growing knowledge surrounding host-microbiome interactions, we are just beginning to understand how the gut microbiome influences-and is influenced by-host gene expression. Here, we review recent literature that intersects these two fields, summarizing themes across studies. Work in model organisms, human biopsies, and cell culture demonstrate that the gut microbiome is an important regulator of several host pathways relevant for disease, including immune development and energy metabolism, and vice versa. The gut microbiome remodels host chromatin, causes differential splicing, alters the epigenetic landscape, and directly interrupts host signaling cascades. Emerging techniques like single-cell RNA sequencing and organoid generation have the potential to refine our understanding of the relationship between the gut microbiome and host gene expression in the future. By intersecting microbiome and host gene expression, we gain a window into the physiological processes important for fostering the extensive cross-kingdom interactions and ultimately our health.


Subject(s)
Gastrointestinal Microbiome/physiology , Gene Expression Regulation/genetics , Gene Expression/genetics , Energy Metabolism/genetics , Humans , RNA, Ribosomal, 16S/genetics
2.
Hum Genomics ; 13(1): 27, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186074

ABSTRACT

The human microbiome is composed of four major areas including intestinal, skin, vaginal, and oral microbiomes, with each area containing unique species and unique functionalities. The human microbiome may be modulated with prebiotics, probiotics, and postbiotics to potentially aid in the treatment of diseases like irritable bowel syndrome, bacterial vaginosis, atopic dermatitis, gingivitis, obesity, or cancer. There is also potential for many of the inhabitants of the human microbiome to directly modulate host gene expression and modulate host detoxifying enzyme activity like cytochrome P450s (CYPs), dehydrogenases, and carboxylesterases. Therefore, the microbiome may be important to consider during drug discovery, risk assessment, and dosing regimens for various diseases given that the human microbiome has been shown to impact host detoxification processes.


Subject(s)
Inactivation, Metabolic/genetics , Microbiota/drug effects , Prebiotics , Probiotics/therapeutic use , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/genetics , Female , Gingivitis/drug therapy , Gingivitis/genetics , Humans , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/genetics , Microbiota/genetics , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/genetics
3.
Hepatology ; 68(4): 1574-1588, 2018 10.
Article in English | MEDLINE | ID: mdl-29486523

ABSTRACT

Bile acids activate farnesoid X receptor (FXR) and G protein-coupled bile acid receptor-1 (aka Takeda G protein-coupled receptor-5 [TGR5]) to regulate bile acid metabolism and glucose and insulin sensitivity. FXR and TGR5 are coexpressed in the enteroendocrine L cells, but their roles in integrated regulation of metabolism are not completely understood. We reported recently that activation of FXR induces TGR5 to stimulate glucagon-like peptide-1 (GLP-1) secretion to improve insulin sensitivity and hepatic metabolism. In this study, we used the intestine-restricted FXR agonist fexaramine (FEX) to study the effect of activation of intestinal FXR on the gut microbiome, bile acid metabolism, and FXR and TGR5 signaling. The current study revealed that FEX markedly increased taurolithocholic acid, increased secretion of fibroblast growth factors 15 and 21 and GLP-1, improved insulin and glucose tolerance, and promoted white adipose tissue browning in mice. Analysis of 16S ribosomal RNA sequences of the gut microbiome identified the FEX-induced and lithocholic acid-producing bacteria Acetatifactor and Bacteroides. Antibiotic treatment completely reversed the FEX-induced metabolic phenotypes and inhibited taurolithocholic acid synthesis, adipose tissue browning, and liver bile acid synthesis gene expression but further increased intestinal FXR target gene expression. FEX treatment effectively improved lipid profiles, increased GLP-1 secretion, improved glucose and insulin tolerance, and promoted adipose tissue browning, while antibiotic treatment reversed the beneficial metabolic effects of FEX in obese and diabetic mice. CONCLUSION: This study uncovered a mechanism in which activation of intestinal FXR shaped the gut microbiota to activate TGR5/GLP-1 signaling to improve hepatic glucose and insulin sensitivity and increase adipose tissue browning; the gut microbiota plays a critical role in bile acid metabolism and signaling to regulate metabolic homeostasis in health and disease. (Hepatology 2018).


Subject(s)
Bile Acids and Salts/metabolism , GTP-Binding Proteins/metabolism , Gastrointestinal Microbiome/drug effects , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Animals , Disease Models, Animal , Glucagon-Like Peptide 1/metabolism , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Random Allocation , Receptors, Cytoplasmic and Nuclear/pharmacology , Sensitivity and Specificity , Signal Transduction
4.
Drug Metab Dispos ; 47(2): 86-93, 2019 02.
Article in English | MEDLINE | ID: mdl-30409838

ABSTRACT

Intestinal bacteria play an important role in bile acid metabolism and in the regulation of multiple host metabolic pathways (e.g., lipid and glucose homeostasis) through modulation of intestinal farnesoid X receptor (FXR) activity. Here, we examined the effect of berberine (BBR), a natural plant alkaloid, on intestinal bacteria using in vitro and in vivo models. In vivo, the metabolomic response and changes in mouse intestinal bacterial communities treated with BBR (100 mg/kg) for 5 days were assessed using NMR- and mass spectrometry-based metabolomics coupled with multivariate data analysis. Short-term BBR exposure altered intestinal bacteria by reducing Clostridium cluster XIVa and IV and their bile salt hydrolase (BSH) activity, which resulted in the accumulation of taurocholic acid (TCA). The accumulation of TCA was associated with activation of intestinal FXR, which can mediate bile acid, lipid, and glucose metabolism. In vitro, isolated mouse cecal bacteria were incubated with three doses of BBR (0.1, 1, and 10 mg/ml) for 4 hours in an anaerobic chamber. NMR-based metabolomics combined with flow cytometry was used to evaluate the direct physiologic and metabolic effect of BBR on the bacteria. In vitro, BBR exposure not only altered bacterial physiology but also changed bacterial community composition and function, especially reducing BSH-expressing bacteria like Clostridium spp. These data suggest that BBR directly affects bacteria to alter bile acid metabolism and activate FXR signaling. These data provide new insights into the link between intestinal bacteria, nuclear receptor signaling, and xenobiotics.


Subject(s)
Berberine/pharmacology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Amidohydrolases/metabolism , Animals , Bacterial Proteins/metabolism , Cecum/drug effects , Cecum/metabolism , Cecum/microbiology , Clostridium/drug effects , Clostridium/isolation & purification , Clostridium/physiology , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Metabolomics/methods , Mice , Mice, Inbred C57BL , Taurocholic Acid/metabolism
5.
Chem Res Toxicol ; 29(12): 1987-1997, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27782392

ABSTRACT

The drug metabolism field has long recognized the beneficial and sometimes deleterious influence of microbiota in the absorption, distribution, metabolism, and excretion of drugs. Early pioneering work with the sulfanilamide precursor prontosil pointed toward the necessity not only to better understand the metabolic capabilities of the microbiota but also, importantly, to identify the specific microbiota involved in the generation and metabolism of drugs. However, technological limitations important for cataloging the microbiota community as well as for understanding and/or predicting their metabolic capabilities hindered progress. Current advances including mass spectrometry-based metabolite profiling as well as culture-independent sequence-based identification and functional analysis of microbiota have begun to shed light on microbial metabolism. In this review, case studies will be presented to highlight key aspects (e.g., microbiota identification, metabolic function and prediction, metabolite identification, and profiling) that have helped to clarify how the microbiota might impact or be impacted by drug metabolism. Lastly, a perspective of the future of this field is presented that takes into account what important knowledge is lacking and how to tackle these problems.


Subject(s)
Microbiota , Molecular Probes , Pharmaceutical Preparations/metabolism , Animals , Humans
6.
J Proteome Res ; 14(4): 1937-46, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25712450

ABSTRACT

Colon cancer is the most common cancer and the third leading cause of cancer mortality in humans. Using mass spectrometry-based metabolomics, the current study revealed the accumulation of four uremic toxins (cresol sulfate, cresol glucuronide, indoxyl sulfate, and phenyl sulfate) in the serum of mice harboring adenomatous polyposis coli (APC) gene mutation-induced colon cancer. These uremic toxins, likely generated from the gut microbiota, were associated with an increase in the expression of the proinflammatory cytokine IL-6 and a disorder of lipid metabolism. Nutmeg, which exhibits antimicrobial activity, attenuated the levels of uremic toxins and decreased intestinal tumorigenesis in Apc(min/+) mice. Nutmeg-treated Apc(min/+) mice had decreased IL-6 levels and normalized dysregulated lipid metabolism, suggesting that uremic toxins are responsible, in part, for the metabolic disorders that occur during tumorigenesis. These studies demonstrate a potential biochemical link among gut microbial metabolism, inflammation, and metabolic disorders and suggest that modulation of gut microbiota and lipid metabolism using dietary intervention or drugs may be effective in colon cancer chemoprevention strategies.


Subject(s)
Adenomatous Polyposis Coli/blood , Adenomatous Polyposis Coli/drug therapy , Myristica/chemistry , Plant Extracts/pharmacology , Toxins, Biological/blood , Toxins, Biological/metabolism , Analysis of Variance , Animals , Blood Chemical Analysis , Caco-2 Cells , Cresols/blood , DNA Primers/genetics , Gene Expression Profiling , Glucuronides/blood , Humans , Indican/blood , Interleukin-6/metabolism , Lipid Metabolism/drug effects , Male , Mass Spectrometry/methods , Metabolomics/methods , Mice , Mice, Inbred C57BL , Plant Extracts/analysis , Plant Extracts/therapeutic use , Sulfuric Acid Esters/blood , Toxins, Biological/toxicity
7.
Environ Sci Technol ; 49(13): 8067-77, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26023891

ABSTRACT

Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.


Subject(s)
Benzofurans/toxicity , Liver/drug effects , Metabolomics/methods , Receptors, Aryl Hydrocarbon/metabolism , Animals , Dioxins/toxicity , Environmental Pollutants/toxicity , Fatty Acids/metabolism , Gene Expression/drug effects , Glucose/metabolism , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/metabolism , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains
8.
Nat Commun ; 14(1): 755, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765047

ABSTRACT

Bile salt hydrolase (BSH) in Bacteroides is considered a potential drug target for obesity-related metabolic diseases, but its involvement in colon tumorigenesis has not been explored. BSH-expressing Bacteroides is found at high abundance in the stools of colorectal cancer (CRC) patients  with overweight and in the feces of a high-fat diet (HFD)-induced CRC mouse model. Colonization of B. fragilis 638R, a strain with low BSH activity, overexpressing a recombinant bsh gene from B. fragilis NCTC9343 strain, results in increased unconjugated bile acids in the colon and accelerated progression of CRC under HFD treatment. In the presence of high BSH activity, the resultant elevation of unconjugated deoxycholic acid and lithocholic acid activates the G-protein-coupled bile acid receptor, resulting in increased ß-catenin-regulated chemokine (C-C motif) ligand 28 (CCL28) expression in colon tumors. Activation of the ß-catenin/CCL28 axis leads to elevated intra-tumoral immunosuppressive CD25+FOXP3+ Treg cells. Blockade of the ß-catenin/CCL28 axis releases the immunosuppression to enhance the intra-tumoral anti-tumor response, which decreases CRC progression under HFD treatment. Pharmacological inhibition of BSH reduces HFD-accelerated CRC progression, coincident with suppression of the ß-catenin/CCL28 pathway. These findings provide insights into the pro-carcinogenetic role of Bacteroides in obesity-related CRC progression and characterize BSH as a potential target for CRC prevention and treatment.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Mice , Bacteroides/genetics , Bacteroides/metabolism , beta Catenin/metabolism , Amidohydrolases/genetics , Carcinogenesis , Obesity/complications , Bile Acids and Salts , Colorectal Neoplasms/pathology
9.
Toxicology ; 458: 152831, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34097992

ABSTRACT

Aryl hydrocarbon receptor (AHR) activation via 2,3,7,8-tetrachlorodibenzofuran (TCDF) induces the accumulation of hepatic lipids. Here we report that AHR activation by TCDF (24  µg/kg body weight given orally for five days) induced significant elevation of hepatic lipids including ceramides in mice, was associated with increased expression of key ceramide biosynthetic genes, and increased activity of their respective enzymes. Results from chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and cell-based reporter luciferase assays indicated that AHR directly activated the serine palmitoyltransferase long chain base subunit 2 (Sptlc2, encodes serine palmitoyltransferase 2 (SPT2)) gene whose product catalyzes the initial rate-limiting step in de novo sphingolipid biosynthesis. Hepatic ceramide accumulation was further confirmed by mass spectrometry-based lipidomics. Taken together, our results revealed that AHR activation results in the up-regulation of Sptlc2, leading to ceramide accumulation, thus promoting lipogenesis, which can induce hepatic lipid accumulation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Ceramides/biosynthesis , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Activation, Metabolic/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Benzofurans/pharmacology , Ceramides/genetics , Gene Expression Regulation/drug effects , Humans , Lipidomics , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Aryl Hydrocarbon/genetics , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Triglycerides/metabolism
10.
Gut Microbes ; 12(1): 1-16, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33295235

ABSTRACT

Emerging evidence supports that exposure to persistent organic pollutants (POPs) can impact the interaction between the gut microbiota and host. Recent efforts have characterized the relationship between gut microbiota and environment pollutants suggesting additional research is needed to understand potential new avenues for toxicity. Here, we systematically examined the direct effects of POPs including 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and polychlorinated biphenyls (PCB-123 and PCB-156) on the microbiota using metatranscriptomics and NMR- and mass spectrometry-based metabolomics combined with flow cytometry and growth rate measurements (OD600). This study demonstrated that (1) POPs directly and rapidly affect isolated cecal bacterial global metabolism that is associated with significant decreases in microbial metabolic activity; (2) significant changes in cecal bacterial gene expression related to tricarboxylic acid (TCA) cycle as well as carbon metabolism, carbon fixation, pyruvate metabolism, and protein export were observed following most POP exposure; (3) six individual bacterial species show variation in lipid metabolism in response to POP exposure; and (4) PCB-153 (non-coplanar)has a greater impact on bacteria than PCB-126 (coplanar) at the metabolic and transcriptional levels. These data provide new insights into the direct role of POPs on gut microbiota and begins to establish possible microbial toxicity endpoints which may help to inform risk assessment.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome/drug effects , Persistent Organic Pollutants/toxicity , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/toxicity , Animals , Benzofurans/toxicity , Carbon/metabolism , Cecum/drug effects , Cecum/microbiology , Citric Acid Cycle/drug effects , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Protein Transport/drug effects , Pyruvic Acid/metabolism
11.
Gut Microbes ; 11(4): 979-996, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32138583

ABSTRACT

Bile acids are potent antibacterial compounds and play an important role in shaping the microbial ecology of the gut. Here, we combined flow cytometry, growth rate measurements (OD600), and NMR- and mass spectrometry-based metabolomics to systematically profile the impact of bile acids on the microbiome using in vitro and in vivo models. This study confirmed that (1) unconjugated bile acids possess more potent antibacterial activity than conjugated bile acids; (2) Gram-positive bacteria are more sensitive to bile acids than Gram-negative bacteria; (3) some probiotic bacteria such as Lactobacillus and Bifidobacterium and 7α-dehydroxylating bacteria such as Clostridium scindens show bile acid resistance that is associated with activation of glycolysis. Moreover, we demonstrated that (4) as one of most hydrophobic bile acids, lithocholic acid (LCA) shows reduced toxicity to bacteria in the cecal microbiome in both in vivo and in vitro models; (5) bile acids directly and rapidly affect bacterial global metabolism including membrane damage, disrupted amino acid, nucleotide, and carbohydrate metabolism; and (6) in vivo, short-term exposure to bile acids significantly affected host metabolism via alterations of the bacterial community structure. This study systematically profiled interactions between bile acids and gut bacteria providing validation of previous observation and new insights into the interaction of bile acids with the microbiome and mechanisms related to bile acid tolerance.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology , Cecum/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/drug effects , Bile Acids and Salts/administration & dosage , Glycolysis , Male , Metabolomics , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Probiotics
12.
Toxicology ; 431: 152365, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31926186

ABSTRACT

Perfluorooctane sulfonate (PFOS) is a persistent environmental chemical whose biological effects are mediated by multiple mechanisms. Recent evidence suggests that the gut microbiome may be directly impacted by and/or alter the fate and effects of environmental chemicals in the host. Thus, the aim of this study was to determine whether PFOS influences the gut microbiome and its metabolism, and the host metabolome. Four groups of male C57BL/6 J mice were fed a diet with or without 0.003 %, 0.006 %, or 0.012 % PFOS, respectively. 16S rRNA gene sequencing, metabolomic, and molecular analyses were used to examine the gut microbiota of mice after dietary PFOS exposure. Dietary PFOS exposure caused a marked change in the gut microbiome compared to controls. Dietary PFOS also caused dose-dependent changes in hepatic metabolic pathways including those involved in lipid metabolism, oxidative stress, inflammation, TCA cycle, glucose, and amino acid metabolism. Changes in the metabolome correlated with changes in genes that regulate these pathways. Integrative analyses also demonstrated a strong correlation between the alterations in microbiota composition and host metabolic profiles induced by PFOS. Further, using isolated mouse cecal contents, PFOS exposure directly affected the gut microbiota metabolism. Results from these studies demonstrate that the molecular and biochemical changes induced by PFOS are mediated in part by the gut microbiome, which alters gene expression and the host metabolome in mice.


Subject(s)
Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Gastrointestinal Microbiome/drug effects , Animals , Cecum/drug effects , Cecum/metabolism , Cecum/microbiology , Diet , Dose-Response Relationship, Drug , Homeostasis/drug effects , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Metabolome , Metabolomics , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/biosynthesis , RNA, Ribosomal, 16S/genetics
13.
Front Immunol ; 10: 1772, 2019.
Article in English | MEDLINE | ID: mdl-31417552

ABSTRACT

The active form of vitamin D (1,25(OH)2D) suppresses experimental models of inflammatory bowel disease in part by regulating the microbiota. In this study, the role of vitamin D in the regulation of microbe induced RORγt/FoxP3+ T regulatory (reg) cells in the colon was determined. Vitamin D sufficient (D+) mice had significantly higher frequencies of FoxP3+ and RORγt/FoxP3+ T reg cells in the colon compared to vitamin D deficient (D-) mice. The higher frequency of RORγt/FoxP3+ T reg cells in D+ colon correlated with higher numbers of bacteria from the Clostridium XIVa and Bacteroides in D+ compared to D- cecum. D- mice with fewer RORγt/FoxP3+ T reg cells were significantly more susceptible to colitis than D+ mice. Transfer of the cecal bacteria from D+ or D- mice to germfree recipients phenocopied the higher numbers of RORγt/FoxP3+ cells and reduced susceptibility to colitis in D+ vs. D- recipient mice. 1,25(OH)2D treatment of the D- mice beginning at 3 weeks of age did not completely recover RORγt/FoxP3+ T reg cells or the Bacteriodes, Bacteriodes thetaiotaomicron, and Clostridium XIVa numbers to D+ values. Early vitamin D status shapes the microbiota to optimize the population of colonic RORγt/FoxP3+ T reg cells important for resistance to colitis.


Subject(s)
Calcitriol/pharmacology , Colitis , Colon , Gastrointestinal Microbiome , T-Lymphocytes, Regulatory/immunology , Animals , Bacteroidetes/immunology , Clostridium/immunology , Colitis/immunology , Colitis/microbiology , Colitis/pathology , Colon/immunology , Colon/microbiology , Colon/pathology , Forkhead Transcription Factors/immunology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Lymphocytes, Regulatory/pathology
14.
Metabolites ; 10(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861317

ABSTRACT

Persistent organic pollutants (POPs) are important environmental chemicals and continued study of their mechanism of action remains a high priority. POPs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and polychlorinated biphenyls (PCBs), are widespread environmental contaminants that are agonists for the aryl hydrocarbon receptor (AHR). Activation of the AHR modulates the gut microbiome community structure and function, host immunity, and the host metabolome. In the current study, male C57BL6/J mice were exposed, via the diet, to 5 µg/kg body weight (BW) TCDF or 24 µg/kg BW of TCDF every day for 5 days. The functional and structural changes imparted by TCDF exposure to the gut microbiome and host metabolome were explored via 16S rRNA gene amplicon sequencing, metabolomics, and bacterial metatranscriptomics. Significant changes included increases in lipopolysaccharide (LPS) biosynthesis gene expression after exposure to 24 µg/kg BW of TCDF. Increases in LPS biosynthesis were confirmed with metabolomics and LPS assays using serum obtained from TCDF-treated mice. Significant increases in gene expression within aspartate and glutamate metabolism were noted after exposure to 24 µg/kg BW of TCDF. Together, these results suggest that after exposure to 24 µg/kg BW of TCDF, the gut microbiome increases the production of LPS and glutamate to promote localized gut inflammation, potentially using glutamate as a stress response.

15.
Metabolites ; 9(6)2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31226775

ABSTRACT

A hydrophilic interaction liquid chromatography (HILIC)-ultra high-pressure liquid chromatography (UHPLC) coupled with tandem mass spectrometry (MS/MS) method was developed and applied to profile metabolite changes in human Huh-7 cells exposed to the potent aryl hydrocarbon receptor (AHR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Comparisons of sensitivity (limit of detection as low as 0.01 µM) and reproducibility (84% of compounds had an interday relative standard deviation (RSD) less than 10.0%; 83% of compounds had an intraday RSD less than 15.0%) were assessed for all the metabolites. The exposure of Huh-7 cells to the hepatotoxic carcinogen TCDD at low doses (1 nM and 10 nM for 4 h and 24 h, respectively) was reflected by the disturbance of amino acid metabolism, energy metabolism (glycolysis, TCA cycle), and nucleic acid metabolism. TCDD caused a significant decrease in amino acids such as serine, alanine, and proline while promoting an increase in arginine levels with 24 h treatment. Energy metabolism intermediates such as phosphoenolpyruvate and acetyl-CoA and nucleosides such as UMP, XMP, and CMP were also markedly decreased. These results support the application of HILIC-UHPLC-MS/MS for robust and reliable analysis of the cellular response to environmentally relevant toxicants at lower doses.

16.
J Nutr Biochem ; 54: 28-34, 2018 04.
Article in English | MEDLINE | ID: mdl-29227833

ABSTRACT

Vitamin A deficiency (A-) is a worldwide public health problem. To better understand how vitamin A status influences gut microbiota and host metabolism, we systematically analyzed urine, cecum, serum and liver samples from vitamin A sufficient (A+) and deficient (A-) mice using 1H NMR-based metabolomics, quantitative (q)PCR and 16S rRNA gene sequencing coupled with multivariate data analysis. The microbiota in the cecum of A- mice showed compositional as well as functional shifts compared to the microbiota from A+ mice. Targeted 1H NMR analyses revealed significant changes in microbial metabolite concentrations including higher butyrate and hippurate and decreased acetate and 4-hydroxyphenylacetate in A+ relative to A- mice. Bacterial butyrate-producing genes including butyryl-CoA:acetate CoA-transferase and butyrate kinase were significantly higher in bacteria from A+ versus bacteria from A- mice. A- mice had disturbances in multiple metabolic pathways including alterations in energy (hyperglycemia, glycogenesis, TCA cycle and lipoprotein biosynthesis), amino acid and nucleic acid metabolism. A- mice had hyperglycemia, liver dysfunction, changes in bacterial metabolism and altered gut microbial communities. Moreover, integrative analyses indicated a strong correlation between gut microbiota and host energy metabolism pathways in the liver. Vitamin A regulates host and bacterial metabolism, and the result includes alterations in energy homeostasis.


Subject(s)
Energy Metabolism/physiology , Gastrointestinal Microbiome/physiology , Vitamin A Deficiency/microbiology , Animals , Body Weight , Female , Glucose Tolerance Test , Magnetic Resonance Spectroscopy , Male , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Vitamin A Deficiency/metabolism
17.
Curr Protoc Toxicol ; 78(1): e54, 2018 11.
Article in English | MEDLINE | ID: mdl-30230220

ABSTRACT

Characterizing the reciprocal interactions between toxicants, the gut microbiota, and the host, holds great promise for improving our mechanistic understanding of toxic endpoints. Advances in culture-independent sequencing analysis (e.g., 16S rRNA gene amplicon sequencing) combined with quantitative metabolite profiling (i.e., metabolomics) have provided new ways of studying the gut microbiome and have begun to illuminate how toxicants influence the structure and function of the gut microbiome. Developing a standardized protocol is important for establishing robust, reproducible, and importantly, comparative data. This protocol can be used as a foundation for examining the gut microbiome via sequencing-based analysis and metabolomics. Two main units follow: (1) analysis of the gut microbiome via sequencing-based approaches; and (2) functional analysis of the gut microbiome via metabolomics. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/drug effects , Hazardous Substances/toxicity , Metabolome/drug effects , Metabolomics/methods , Toxicology/methods , DNA, Bacterial/genetics , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
18.
mSystems ; 3(6)2018.
Article in English | MEDLINE | ID: mdl-30417115

ABSTRACT

The gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combines in vitro microbial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and 1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and function in vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that the in vitro approach reflected in vivo conditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison of in vitro and in vivo exposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity. IMPORTANCE The gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.

19.
Nat Med ; 24(12): 1919-1929, 2018 12.
Article in English | MEDLINE | ID: mdl-30397356

ABSTRACT

The anti-hyperglycemic effect of metformin is believed to be caused by its direct action on signaling processes in hepatocytes, leading to lower hepatic gluconeogenesis. Recently, metformin was reported to alter the gut microbiota community in humans, suggesting that the hyperglycemia-lowering action of the drug could be the result of modulating the population of gut microbiota. However, the critical microbial signaling metabolites and the host targets associated with the metabolic benefits of metformin remained elusive. Here, we performed metagenomic and metabolomic analysis of samples from individuals with newly diagnosed type 2 diabetes (T2D) naively treated with metformin for 3 d, which revealed that Bacteroides fragilis was decreased and the bile acid glycoursodeoxycholic acid (GUDCA) was increased in the gut. These changes were accompanied by inhibition of intestinal farnesoid X receptor (FXR) signaling. We further found that high-fat-diet (HFD)-fed mice colonized with B. fragilis were predisposed to more severe glucose intolerance, and the metabolic benefits of metformin treatment on glucose intolerance were abrogated. GUDCA was further identified as an intestinal FXR antagonist that improved various metabolic endpoints in mice with established obesity. Thus, we conclude that metformin acts in part through a B. fragilis-GUDCA-intestinal FXR axis to improve metabolic dysfunction, including hyperglycemia.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/drug effects , Metformin/administration & dosage , Obesity/drug therapy , Receptors, Cytoplasmic and Nuclear/genetics , Bacteroides/drug effects , Bacteroides/pathogenicity , Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/genetics , Gene Expression Regulation, Bacterial/drug effects , Glucose Intolerance/drug therapy , Glucose Intolerance/genetics , Glucose Intolerance/microbiology , Humans , Hyperglycemia/drug therapy , Hyperglycemia/genetics , Hyperglycemia/microbiology , Hyperglycemia/pathology , Metabolome/drug effects , Metabolome/genetics , Metagenomics/methods , Obesity/genetics , Obesity/microbiology , Obesity/pathology , Ursodeoxycholic Acid/analogs & derivatives
20.
Curr Opin Toxicol ; 2: 30-35, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29527582

ABSTRACT

The aryl hydrocarbon receptor (AHR) is an important component of the host-microbiota communication network. Comparisons of wild-type and Ahr-null mice as well as from exposure studies with potent AHR ligands (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin) have provided compelling evidence that the AHR may be a master regulator of the host-microbiota interaction thus helping to shape the immune system and impact host metabolism. Metabolomics and sequenced-based microbial community profiling, two recent technological advances, have helped to solidify this host-microbiota signaling concept and identified not only how specific ligands generated by the host and by the microbiota can activate the AHR, but also how activation/disruption of the AHR can influence and shape the microbiota. We are just beginning to understand how the temporal nature and tissue- and microbiota-specific generation of AHR ligands contribute to many AHR-dependent processes. In this review, we focus on several recent advances where metabolomics and characterization of the microbiota structure and function have generated new perspectives by which to evaluate AHR activity.

SELECTION OF CITATIONS
SEARCH DETAIL