Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Bioconjug Chem ; 35(3): 381-388, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446033

ABSTRACT

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is overexpressed in human triple-negative breast cancer (TNBC) and promotes cell migration and proliferation. TNBC is limited in treatment options relative to hormone-receptor-positive breast cancer and is commonly treated with chemotherapy, which is often compromised by acquired resistance. DANCR has been implicated in the development of chemoresistance across multiple cancer types. Here, we applied magnetic resonance molecular imaging (MRMI) with a targeted contrast agent, MT218, specific to extradomain-B fibronectin (EDB-FN), a marker for epithelial-to-mesenchymal transition, to assess the therapeutic efficacy of the combination of paclitaxel and ZD2-PEG-ECO/siDANCR nanoparticles (ZD2-siDANCR-ELNP) to treat TNBC. The treatment of orthotopic MDA-MB-231 TNBC in mice with paclitaxel significantly suppressed tumor growth but with a significant increase of EDB-FN in the tumor, as revealed by MRMI and immunohistochemistry. Combining ZD2-siDANCR-ELNP with paclitaxel further reduced tumor sizes, along with reduced EDB-FN expression. Interestingly, MT218-MRMI revealed a lower reduction of tumor signal enhancement with the combination treatment than that with the siDANCR treatment alone, which was supported by higher cell density in the tumors treated with the combination therapy, as shown by histochemical analysis. MT218-MRMI clearly revealed the changes of the tumor microenvironment in response to various therapies and is effective to noninvasively assess the response of TNBC tumors to the therapies. Regulating oncogenic lncRNA DANCR is an effective strategy for improving the outcomes of chemotherapy in TNBC.


Subject(s)
RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , RNA, Long Noncoding/genetics , RNA Interference , Cell Line, Tumor , Paclitaxel/therapeutic use , Magnetic Resonance Spectroscopy , Molecular Imaging/methods , Cell Proliferation , Tumor Microenvironment
2.
Chem Biomed Imaging ; 1(5): 461-470, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37655165

ABSTRACT

Differentiation antagonizing noncoding RNA (DANCR) is recognized as an oncogenic long noncoding RNA (lncRNA) overexpressed in triple negative breast cancer (TNBC). We showed in a previous study that RNAi with targeted multifunctional ionizable lipid ECO/siRNA nanoparticles was effective to regulate this undruggable target for effective treatment of TNBC. In this study, we developed dual-targeted ECO/siDANCR nanoparticles by targeting a tumor extracellular matrix oncoprotein, extradomain B fibronectin (EDB-FN), and integrins overexpressed on cancer cells for enhanced delivery of siDANCR. The treatment of Hs578T TNBC cells and MCF-7 estrogen receptor-positive cells in vitro resulted in significant down-regulation of DANCR and EDB-FN and suppressed invasion and 3D spheroid formation of the cells. Magnetic resonance molecular imaging (MRMI) with an EDB-FN-targeted contrast agent, MT218, was used to noninvasively evaluate tumor response to treatment with the targeted ECO/siDANCR nanoparticles in female nude mice bearing orthotopic Hs578T and MCF-7 xenografts. MRMI with MT218 was effective to differentiate between aggressive TNBC with high DANCR and EDB-FN expression and ER+ MCF-7 tumors with low expression of the targets. MRMI showed that the dual-targeted ECO/siDANCR nanoparticles resulted in more significant inhibition of tumor growth in both models than the controls and significantly reduced EDB-FN expression in the TNBC tumors. The combination of MRMI and dual-targeted ECO/siDANCR nanoparticles is a promising approach for image-guided treatment of TNBC by regulating the onco-lncRNA.

3.
ACS Omega ; 7(26): 22743-22753, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811871

ABSTRACT

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is a proven oncogenic lncRNA across multiple cancer types. Its effects on cancer cell migration and invasion position it as a potential target for therapy on multiple levels of gene regulation. DANCR is overexpressed in non-small cell lung cancer (NSCLC), the most common lung cancer subtype with poor patient survival. To effectively deliver small interfering RNA (siRNA) against DANCR for NSCLC therapy, we used arginine-glycine-aspartic acid (RGD)-poly(ethylene glycol) (PEG)-(1-aminoethyl)-iminobis[N-oleicylcysteinyl-1-aminoethyl)propionamide] (ECO)/small interfering RNA against DANCR (siDANCR) nanoparticles to transfect A549 and NCI-H1299 cells. Over 90% DANCR silencing was observed along with inhibition of cell migration, invasion, and spheroid formation relative to transfection with negative control siRNA in RGD-PEG-ECO nanoparticles. DANCR knockdown further showed efficacy in reducing migration and invasion of epidermal growth factor receptor (EGFR)-inhibitor resistant NSCLC along with resensitization to the inhibitor. RGD-PEG-ECO/siDANCR demonstrated silencing for up to 7 d following a single transfection. The results suggest nanoparticle-mediated RNA interference against DANCR as a potential approach for NSCLC treatment by regulating cell migration and invasion in addition to improving EGFR inhibitor response.

4.
Invest Radiol ; 57(10): 639-654, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35703463

ABSTRACT

OBJECTIVES: Preclinical assessments were performed according to the US Food and Drug Administration guidelines to determine the physicochemical properties, pharmacokinetics, clearance, safety, and tumor-specific magnetic resonance (MR) imaging of MT218, a peptidic gadolinium-based MR imaging agent targeting to extradomain B fibronectin for MR molecular imaging of aggressive tumors. MATERIALS AND METHODS: Relaxivity, chelation stability, binding affinity, safety-related target profiling, and effects on CYP450 enzymes and transporters were evaluated in vitro. Magnetic resonance imaging was performed with rats bearing prostate cancer xenografts, immunocompetent mice bearing murine pancreatic cancer allografts, and mice bearing lung cancer xenografts at different doses of MT218. Pharmacological effects on cardiovascular, respiratory, and central nervous systems were determined in rats and conscious beagle dogs. Pharmacokinetics were tested in rats and dogs. Biodistribution and excretion were studied in rats. Single and repeated dosing toxicity was evaluated in rats and dogs. In vitro and in vivo genotoxicity, in vitro hemolysis, and anaphylactic reactivity were also performed. RESULTS: At 1.4 T, the r1 and r2 relaxivities of MT218 were 5.43 and 7.40 mM -1 s -1 in pure water, 6.58 and 8.87 mM -1 s -1 in phosphate-buffered saline, and 6.54 and 8.70 mM -1 s -1 in aqueous solution of human serum albumin, respectively. The binding affinity of MT218 to extradomain B fragment is 3.45 µM. MT218 exhibited no dissociation of the Gd(III) chelates under physiological conditions. The peptide degradation half-life ( t1/2 ) of MT218 was 1.63, 5.85, and 2.63 hours in rat, dog, and human plasma, respectively. It had little effect on CYP450 enzymes and transporters. MT218 produced up to 7-fold increase of contrast-to-noise ratios in the extradomain B fibronectin-rich tumors with a dose of 0.04 mmol/kg for at least 30 minutes. MT218 had little pharmacological effect on central nervous, cardiovascular, or respiratory systems. MT218 had a mean plasma elimination half-life ( t1/2 ) of 0.31 and 0.89 hours in rats and dogs at 0.1 mmol/kg, respectively. No detectable Gd deposition was observed in the brain at 6 hours postinjection of MT218 at 0.1 mmol/kg in rats. MT218 was not mutagenic and had no mortality or morbidity in the rats or dogs up to 1.39 and 0.70 mmol/kg/d, respectively. The no observed adverse effect level of MT218 in Sprague-Dawley rats was 1.39 mmol/kg for single dosing and 0.46 mmol/kg/d for repeated dosing. The no observed adverse effect level in dogs was 0.07 mmol/kg/d. MT218 exhibited no genotoxicity, hemolysis, and anaphylactic reactivity. CONCLUSION: The preclinical assessments showed that the targeted contrast agent MT218 has high r1 and r2 relaxivities, satisfactory physicochemical properties, pharmacokinetic, and safety profiles and produces effective tumor enhancement in multiple cancer types in rats and mice at reduced doses.


Subject(s)
Contrast Media , Prostatic Neoplasms , Animals , Chelating Agents , Contrast Media/pharmacokinetics , Dogs , Fibronectins , Hemolysis , Humans , Magnetic Resonance Imaging/methods , Male , Mice , Prostatic Neoplasms/diagnostic imaging , Rats , Rats, Sprague-Dawley , Tissue Distribution
5.
Biofabrication ; 11(1): 014101, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30284537

ABSTRACT

Current methods to treat large soft-tissue defects mainly rely on autologous transfer of adipocutaneous flaps, a method that is often limited by donor site availability. Engineered vascularized adipose tissues can potentially be a viable and readily accessible substitute to autologous flaps. In this study, we engineered a small-scale adipose tissue with pre-patterned vasculature that enables immediate perfusion. Vessels formed after one day of perfusion and displayed barrier function after three days of perfusion. Under constant perfusion, adipose tissues remained viable and responded to lipoactive hormones insulin and epinephrine with lipid accumulation and loss, respectively. Adipocyte growth correlated inversely with distance away from the feeding vessel, as predicted by a Krogh-type model.


Subject(s)
Adipose Tissue/blood supply , Adipose Tissue/metabolism , Epinephrine/metabolism , Insulin/metabolism , Microvessels/growth & development , Tissue Engineering/methods , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue/growth & development , Animals , Cell Proliferation , Hormones/chemistry , Hormones/metabolism , Humans , Lipid Metabolism , Mice , Microvessels/metabolism , NIH 3T3 Cells , Perfusion , Tissue Engineering/instrumentation
6.
Tissue Eng Part A ; 23(7-8): 335-344, 2017 04.
Article in English | MEDLINE | ID: mdl-27998245

ABSTRACT

Tissue-engineered vascular grafts that are based on reconstituted extracellular matrices have been plagued by weak mechanical strength that prevents handling or anastomosis to native vessels. In this study, we devise a method for making dense, suturable collagen tubular constructs of diameter ≤1 mm for potential microsurgical applications, by dehydrating tubes of native rat tail type I collagen and crosslinking them with 20 mM genipin. Crosslinked dense collagen tubes with 1 mm inner diameter yielded ultimate tensile strength of 342 ± 15 gF and burst pressure of 1313 ± 156 mm Hg, comparable to the strength of a rat femoral artery, and supported endothelial cell adhesion and growth. End-to-end anastomosis of 0.5-mm-diameter tubes to explanted arteries displayed anastomotic strength of 82 ± 21 gF, which is sufficient for surgical applications. In vivo implantation of cell-free tubes as interpositional grafts in the rat femoral circulation yielded stable anastomosis with blood flow for 20 min. Seeded dense collagen tubes represent a promising alternative to venous graft that can potentially be used to bridge between short artery stubs in replantation surgeries.


Subject(s)
Blood Vessel Prosthesis , Collagen/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Arteries/cytology , Human Umbilical Vein Endothelial Cells , Humans , Rats , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL