Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Blood ; 143(1): 64-69, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37883794

ABSTRACT

ABSTRACT: Platelet factor 4 (PF4) is an abundant chemokine that is released from platelet α-granules on activation. PF4 is central to the pathophysiology of vaccine-induced immune thrombocytopenia and thrombosis (VITT) in which antibodies to PF4 form immune complexes with PF4, which activate platelets and neutrophils through Fc receptors. In this study, we show that PF4 binds and activates the thrombopoietin receptor, cellular myeloproliferative leukemia protein (c-Mpl), on platelets. This leads to the activation of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription (STAT) 3 and STAT5, leading to platelet aggregation. Inhibition of the c-Mpl-JAK2 pathway inhibits platelet aggregation to PF4, VITT sera, and the combination of PF4 and IgG isolated from VITT patient plasma. The results support a model in which PF4-based immune complexes activate platelets through binding of the Fc domain to FcγRIIA and PF4 to c-Mpl.


Subject(s)
Janus Kinase 2 , Thrombocytopenia , Humans , Antigen-Antibody Complex/metabolism , Blood Platelets/metabolism , Heparin/adverse effects , Immunologic Factors/adverse effects , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Platelet Factor 4 , Receptors, Thrombopoietin/metabolism , Thrombocytopenia/chemically induced
2.
Br J Haematol ; 204(6): 2442-2452, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429869

ABSTRACT

Few studies have reported the real-world use of both romiplostim and eltrombopag in immune thrombocytopenia (ITP). TRAIT was a retrospective observational study aimed to evaluate the platelet responses and adverse effects associated with the use of these thrombopoietin receptor agonists (TPO-RAs) in adult patients with ITP in the United Kingdom. Of 267 patients (median age at diagnosis, 48 years) with ITP (primary ITP [n = 218], secondary ITP [n = 49]) included in the study, 112 (42%) received eltrombopag and 155 (58%) received romiplostim as the first prescribed TPO-RA. A platelet count ≥30 × 109/L was achieved in 89% of patients with the first TPO-RA treatments, while 68% achieved a platelet count ≥100 × 109/L. Treatment-free response (TFR; platelet count ≥30 × 109/L, 3 months after discontinuing treatment) was achieved by 18% of the total patients. Overall, 61 patients (23%) switched TPO-RAs, most of whom achieved platelet counts ≥30 × 109/L with the second TPO-RA (23/25 who switched from eltrombopag to romiplostim [92%]; 28/36 who switched from romiplostim to eltrombopag [78%]). TFR was associated with secondary ITP, early TPO-RA initiation after diagnosis, the presence of comorbidity and no prior splenectomy or treatment with steroids or mycophenolate mofetil. Both TPO-RAs had similar efficacy and safety profiles to those reported in clinical studies.


Subject(s)
Benzoates , Hydrazines , Purpura, Thrombocytopenic, Idiopathic , Pyrazoles , Receptors, Fc , Receptors, Thrombopoietin , Recombinant Fusion Proteins , Thrombopoietin , Humans , Receptors, Thrombopoietin/agonists , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/adverse effects , Recombinant Fusion Proteins/administration & dosage , Middle Aged , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Benzoates/therapeutic use , Benzoates/adverse effects , Male , Female , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Thrombopoietin/therapeutic use , Thrombopoietin/adverse effects , Hydrazines/therapeutic use , Hydrazines/adverse effects , Receptors, Fc/therapeutic use , Adult , United Kingdom , Retrospective Studies , Aged , Platelet Count , Treatment Outcome , Aged, 80 and over , Young Adult , Adolescent
3.
Blood ; 140(24): 2626-2643, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36026606

ABSTRACT

S100A8/A9, also known as "calprotectin" or "MRP8/14," is an alarmin primarily secreted by activated myeloid cells with antimicrobial, proinflammatory, and prothrombotic properties. Increased plasma levels of S100A8/A9 in thrombo-inflammatory diseases are associated with thrombotic complications. We assessed the presence of S100A8/A9 in the plasma and lung autopsies from patients with COVID-19 and investigated the molecular mechanism by which S100A8/A9 affects platelet function and thrombosis. S100A8/A9 plasma levels were increased in patients with COVID-19 and sustained high levels during hospitalization correlated with poor outcomes. Heterodimeric S100A8/A9 was mainly detected in neutrophils and deposited on the vessel wall in COVID-19 lung autopsies. Immobilization of S100A8/A9 with collagen accelerated the formation of a fibrin-rich network after perfusion of recalcified blood at venous shear. In vitro, platelets adhered and partially spread on S100A8/A9, leading to the formation of distinct populations of either P-selectin or phosphatidylserine (PS)-positive platelets. By using washed platelets, soluble S100A8/A9 induced PS exposure but failed to induce platelet aggregation, despite GPIIb/IIIa activation and alpha-granule secretion. We identified GPIbα as the receptor for S100A8/A9 on platelets inducing the formation of procoagulant platelets with a supporting role for CD36. The effect of S100A8/A9 on platelets was abolished by recombinant GPIbα ectodomain, platelets from a patient with Bernard-Soulier syndrome with GPIb-IX-V deficiency, and platelets from mice deficient in the extracellular domain of GPIbα. We identified the S100A8/A9-GPIbα axis as a novel targetable prothrombotic pathway inducing procoagulant platelets and fibrin formation, in particular in diseases associated with high levels of S100A8/A9, such as COVID-19.


Subject(s)
Blood Platelets , COVID-19 , Calgranulin A , Calgranulin B , Platelet Glycoprotein GPIb-IX Complex , Animals , Mice , Blood Platelets/metabolism , Calgranulin A/metabolism , COVID-19/metabolism , Fibrin/metabolism , Phosphatidylserines/metabolism , Platelet Aggregation , Humans , Calgranulin B/metabolism , Autopsy , Platelet Glycoprotein GPIb-IX Complex/metabolism
4.
Blood ; 137(13): 1731-1740, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33150355

ABSTRACT

The cornerstone of life-saving therapy in immune-mediated thrombotic thrombocytopenic purpura (iTTP) has been plasma exchange (PEX) combined with immunomodulatory strategies. Caplacizumab, a novel anti-von Willebrand factor nanobody trialed in 2 multicenter randomized controlled trials (RCTs) leading to European Union and US Food and Drug Administration approval, has been available in the United Kingdom (UK) through a patient access scheme. Data were collected retrospectively from 2018 to 2020 for 85 patients (4 children) receiving caplacizumab from 22 UK hospitals. Patient characteristics and outcomes in the real-world clinical setting were compared with caplacizumab trial end points and historical outcomes in the precaplacizumab era. Eighty-four of 85 patients received steroid and rituximab alongside PEX; 26% required intubation. Median time to platelet count normalization (3 days), duration of PEX (7 days), and hospital stay (12 days) were comparable with RCT data. Median duration of PEX and time from PEX initiation to platelet count normalization were favorable compared with historical outcomes (P < .05). Thrombotic thrombocytopenic purpura (TTP) recurred in 5 of 85 patients; all had persistent ADAMTS13 activity < 5 IU/dL. Of 31 adverse events in 26 patients, 17 of 31 (55%) were bleeding episodes, and 5 of 31 (16%) were thrombotic events (2 unrelated to caplacizumab); mortality was 6% (5/85), with no deaths attributed to caplacizumab. In 4 of 5 deaths, caplacizumab was introduced >48 hours after PEX initiation (3-21 days). This real-world evidence represents the first and largest series of TTP patients, including pediatric patients, receiving caplacizumab outside of clinical trials. Representative of true clinical practice, the findings provide valuable information for clinicians treating TTP globally.


Subject(s)
Fibrinolytic Agents/therapeutic use , Purpura, Thrombotic Thrombocytopenic/drug therapy , Single-Domain Antibodies/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Disease Management , Female , Fibrinolytic Agents/adverse effects , Humans , Male , Middle Aged , Purpura, Thrombotic Thrombocytopenic/epidemiology , Single-Domain Antibodies/adverse effects , Treatment Outcome , United Kingdom/epidemiology , Young Adult , von Willebrand Factor/antagonists & inhibitors
5.
Platelets ; 34(1): 2131751, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36331249

ABSTRACT

Spleen tyrosine kinase (SYK) is an important regulatory molecule of signal transduction pathways involved in the pathogenesis of autoimmune diseases such as immune thrombocytopenia (ITP), and the SYK-signaling pathway has emerged as a potential target for the treatment of numerous diseases. The aim of this narrative review is to summarize the biological properties of SYK and its involvement in disease pathways, provide an update on SYK inhibitors in the treatment of ITP, and consider other potential applications. Fostamatinib, the only licensed SYK inhibitor to date, produces clinical response in ITP patients, including those who are refractory to other treatments. It appears to reduce the risk of thrombotic events and may therefore be a drug to consider for patients with an increased thrombotic risk. Encouraging results have also been obtained in the treatment of warm autoimmune hemolytic anemia. Several other SYK inhibitors have entered clinical trials for a range of indications, reflecting the ability of these drugs to affect multiple signaling pathways. SYK inhibitors have the potential to target several aspects of COVID-19 pathogenesis including thrombosis, without affecting normal hemostasis, and data from the first study of fostamatinib in COVID-19 are encouraging. It is hoped that ongoing trials in autoimmune indications other than ITP, as well as in hematological malignancies and other disorders, confirm the promise of SYK inhibitors.


Immune thrombocytopenia (ITP) is an autoimmune disease that usually happens when your immune system mistakenly attacks and destroys platelets, which are cells that help blood to clot. Individuals with ITP can experience easy or excessive bruising and bleeding. Scientists have identified that an enzyme called spleen tyrosine kinase (SYK) is involved in numerous biological processes that are associated with the immune system response, inflammation, and some types of cancer in humans. Therefore, it has become a target for new drugs which inhibit the action of SYK. In this review article, the authors provide a summary of the biological properties and actions of SYK and its involvement in various diseases, discuss information about drugs that have been developed as SYK inhibitors for the treatment of ITP, and consider other potential uses for drugs that inhibit SYK. Although several drugs are being developed, the only SYK inhibitor that is currently available for the treatment of ITP is a drug called fostamatinib. In patients with ITP, including those who no longer respond to other treatments, fostamatinib has been shown to improve platelet counts and reduce bleeding events. Researchers are also currently investigating the use of drugs that inhibit SYK, including fostamatinib, for the potential treatment of other diseases associated with inflammation (e.g. rheumatoid arthritis, COVID-19), autoimmunity (e.g. warm autoimmune hemolytic anemia), and blood cancers (e.g. lymphoma, chronic lymphocytic leukemia, and acute myeloid leukemia).


Subject(s)
COVID-19 , Oxazines , Purpura, Thrombocytopenic, Idiopathic , Pyridines , Humans , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Oxazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Pyridines/pharmacology , Syk Kinase
6.
Br J Haematol ; 196(1): 79-94, 2022 01.
Article in English | MEDLINE | ID: mdl-34500500

ABSTRACT

Coagulation dysfunction and thrombosis are major complications in patients with coronavirus disease 2019 (COVID-19). Patients on oral anticoagulants (OAC) prior to diagnosis of COVID-19 may therefore have better outcomes. In this multicentre observational study of 5 883 patients (≥18 years) admitted to 26 UK hospitals between 1 April 2020 and 31 July 2020, overall mortality was 29·2%. Incidences of thrombosis, major bleeding (MB) and multiorgan failure (MOF) were 5·4%, 1·7% and 3·3% respectively. The presence of thrombosis, MB, or MOF was associated with a 1·8, 4·5 or 5·9-fold increased risk of dying, respectively. Of the 5 883 patients studied, 83·6% (n = 4 920) were not on OAC and 16·4% (n = 963) were taking OAC at the time of admission. There was no difference in mortality between patients on OAC vs no OAC prior to admission when compared in an adjusted multivariate analysis [hazard ratio (HR) 1·05, 95% confidence interval (CI) 0·93-1·19; P = 0·15] or in an adjusted propensity score analysis (HR 0·92 95% CI 0·58-1·450; P = 0·18). In multivariate and adjusted propensity score analyses, the only significant association of no anticoagulation prior to diagnosis of COVID-19 was admission to the Intensive-Care Unit (ICU) (HR 1·98, 95% CI 1·37-2·85). Thrombosis, MB, and MOF were associated with higher mortality. Our results indicate that patients may have benefit from prior OAC use, especially reduced admission to ICU, without any increase in bleeding.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/complications , Thrombosis/complications , Thrombosis/drug therapy , Administration, Oral , Adult , Aged , Aged, 80 and over , Anticoagulants/adverse effects , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Female , Hemorrhage/chemically induced , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombosis/epidemiology , United Kingdom/epidemiology
7.
Haematologica ; 107(1): 243-259, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33327716

ABSTRACT

In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which ß1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.


Subject(s)
Induced Pluripotent Stem Cells , Tubulin , Blood Platelets/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Protein Processing, Post-Translational , Thrombopoiesis , Tubulin/genetics , Tubulin/metabolism
8.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35805988

ABSTRACT

New antithrombotic medications with less effect on haemostasis are needed for the long-term treatment of acute coronary syndromes (ACS). The platelet receptor glycoprotein VI (GPVI) is critical in atherothrombosis, mediating platelet activation at atherosclerotic plaque. The inhibition of spleen tyrosine kinase (Syk) has been shown to block GPVI-mediated platelet function. The aim of our study was to investigate if the Syk inhibitor fostamatinib could be repurposed as an antiplatelet drug, either alone or in combination with conventional antiplatelet therapy. The effect of the active metabolite of fostamatinib (R406) was assessed on platelet activation and function induced by atherosclerotic plaque and a range of agonists in the presence and absence of the commonly used antiplatelet agents aspirin and ticagrelor. The effects were determined ex vivo using blood from healthy volunteers and aspirin- and ticagrelor-treated patients with ACS. Fostamatinib was also assessed in murine models of thrombosis. R406 mildly inhibited platelet responses induced by atherosclerotic plaque homogenate, likely due to GPVI inhibition. The anti-GPVI effects of R406 were amplified by the commonly-used antiplatelet medications aspirin and ticagrelor; however, the effects of R406 were concentration-dependent and diminished in the presence of plasma proteins, which may explain why fostamatinib did not significantly inhibit thrombosis in murine models. For the first time, we demonstrate that the Syk inhibitor R406 provides mild inhibition of platelet responses induced by atherosclerotic plaque and that this is mildly amplified by aspirin and ticagrelor.


Subject(s)
Plaque, Atherosclerotic , Thrombosis , Aminopyridines , Animals , Aspirin , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Humans , Mice , Morpholines , Oxazines/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Pyridines/pharmacology , Pyrimidines , Thrombosis/drug therapy , Ticagrelor/pharmacology
9.
Br J Haematol ; 195(1): 85-89, 2021 10.
Article in English | MEDLINE | ID: mdl-34132386

ABSTRACT

The impact of COVID-19 infection on pregnant women remains relatively unknown but the physiological changes of pregnancy and hypercoagulability of COVID-19 may further increase thrombotic risk. In this retrospective multicentre observational study, we report clinical characteristics and outcomes in 36 pregnant women requiring hospitalisation for COVID-19 compared to a propensity-matched cohort of non-pregnant women. Pregnant women had a lower haemoglobin and higher lymphocyte counts but no differences in other haematological or biochemical parameters on admission compared to non-pregnant women. There was no significant difference in the duration of hospitalisation; median two days (1-77) for pregnant versus eight days (1-49) for non-pregnant women. A higher proportion of non-pregnant women required mechanical ventilation [11/36 (31%) vs 3/36 (8%), P = 0·03] and received thromboprophylaxis with low-molecular-weight heparin (LMWH) within 24 h of admission [25/36 (69%) vs 15 /36(42%), P = 0·03] compared to pregnant women. One pregnant woman required extracorporeal membrane oxygenation. The rate of thrombosis was similar in both groups (one in each group). No women developed major bleeding or died. Data suggest that although non-pregnant women had a severe clinical course, overall outcomes were not different between women with or without pregnancy. The use of thromboprophylaxis was inconsistent, demonstrating a need for establishing evidence-based guidance for COVID-19 during pregnancy.


Subject(s)
COVID-19/blood , Thrombosis/drug therapy , Adult , Female , Hospitalization , Humans , Middle Aged , Pregnancy , Pregnant Women , Retrospective Studies , United Kingdom , Young Adult
10.
Haematologica ; 106(1): 208-219, 2021 01 01.
Article in English | MEDLINE | ID: mdl-31949019

ABSTRACT

Inhibitors of the tyrosine kinase Btk have been proposed as novel antiplatelet agents. In this study we show that low concentrations of the Btk inhibitor ibrutinib block CLEC-2-mediated activation and tyrosine phosphorylation including Syk and PLCγ2 in human platelets. Activation is also blocked in patients with X-linked agammaglobulinemia (XLA) caused by a deficiency or absence of Btk. In contrast, the response to GPVI is delayed in the presence of low concentrations of ibrutinib or in patients with XLA, and tyrosine phosphorylation of Syk is preserved. A similar set of results is seen with the second-generation inhibitor, acalabrutinib. The differential effect of Btk inhibition in CLEC-2 relative to GPVI signalling is explained by the positive feedback role involving Btk itself, as well as ADP and thromboxane A2 mediated activation of P2Y12 and TP receptors, respectively. This feedback role is not seen in mouse platelets and, consistent with this, CLEC-2-mediated activation is blocked by high but not by low concentrations of ibrutinib. Nevertheless, thrombosis was absent in 8 out of 13 mice treated with ibrutinib. These results show that Btk inhibitors selectively block activation of human platelets by CLEC-2 relative to GPVI suggesting that they can be used at 'low dose' in patients to target CLEC-2 in thrombo-inflammatory disease.


Subject(s)
Platelet Activation , Platelet Membrane Glycoproteins , Animals , Blood Platelets , Humans , Lectins, C-Type , Mice , Protein Kinase Inhibitors/pharmacology
11.
Platelets ; 32(1): 29-41, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33307909

ABSTRACT

Antiplatelet medications comprise the cornerstone of treatment for diseases that involve arterial thrombosis, including acute coronary syndromes (ACS), stroke and peripheral arterial disease. However, antiplatelet medications may cause bleeding and, furthermore, thrombotic events may still recur despite treatment. The interaction of collagen with GPVI receptors on the surface of platelets has been identified as one of the major players in the pathophysiology of arterial thrombosis that occurs following atherosclerotic plaque rupture. Promisingly, GPVI deficiency in humans appears to have a minimal impact on bleeding. These findings together suggest that targeting platelet GPVI may provide a novel treatment strategy that provides additional antithrombotic efficacy with minimal disruption of normal hemostasis compared to conventional antiplatelet medications. CLEC-2 is gaining interest as a therapeutic target for a variety of thrombo-inflammatory disorders including deep vein thrombosis (DVT) with treatment also predicted to cause minimal disruption to hemostasis. GPVI and CLEC-2 signal through Src, Syk and Tec family tyrosine kinases, providing additional strategies for inhibiting both receptors. In this review, we summarize the evidence regarding GPVI and CLEC-2 and strategies for inhibiting these receptors to inhibit platelet recruitment and activation in thrombotic diseases.


Subject(s)
Lectins, C-Type/drug effects , Membrane Glycoproteins/drug effects , Platelet Aggregation Inhibitors/therapeutic use , Platelet Membrane Glycoproteins/drug effects , Protein-Tyrosine Kinases/drug effects , Humans , Platelet Aggregation Inhibitors/pharmacology
14.
Haematologica ; 103(12): 2097-2108, 2018 12.
Article in English | MEDLINE | ID: mdl-30026342

ABSTRACT

Ibrutinib and acalabrutinib are irreversible inhibitors of Bruton tyrosine kinase used in the treatment of B-cell malignancies. They bind irreversibly to cysteine 481 of Bruton tyrosine kinase, blocking autophosphorylation on tyrosine 223 and phosphorylation of downstream substrates including phospholipase C-γ2. In the present study, we demonstrate that concentrations of ibrutinib and acalabrutinib that block Bruton tyrosine kinase activity, as shown by loss of phosphorylation at tyrosine 223 and phospholipase C-γ2, delay but do not block aggregation in response to a maximally-effective concentration of collagen-related peptide or collagen. In contrast, 10- to 20-fold higher concentrations of ibrutinib or acalabrutinib block platelet aggregation in response to glycoprotein VI agonists. Ex vivo studies on patients treated with ibrutinib, but not acalabrutinib, showed a reduction of platelet aggregation in response to collagen-related peptide indicating that the clinical dose of ibrutinib but not acalabrutinib is supramaximal for Bruton tyrosine kinase blockade. Unexpectedly, low concentrations of ibrutinib inhibited aggregation in response to collagen-related peptide in patients deficient in Bruton tyrosine kinase. The increased bleeding seen with ibrutinib over acalabrutinib is due to off-target actions of ibrutinib that occur because of unfavorable pharmacodynamics.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinemia/drug therapy , Blood Platelets/drug effects , Genetic Diseases, X-Linked/drug therapy , Platelet Membrane Glycoproteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinemia/blood , Agammaglobulinemia/genetics , Benzamides/administration & dosage , Benzamides/metabolism , Blood Platelets/metabolism , Carrier Proteins/administration & dosage , Genetic Diseases, X-Linked/blood , Genetic Diseases, X-Linked/genetics , Humans , Mutation , Peptides/administration & dosage , Piperidines , Platelet Activation/drug effects , Platelet Function Tests , Platelet Membrane Glycoproteins/agonists , Protein Kinase Inhibitors/metabolism , Pyrazines/administration & dosage , Pyrazines/metabolism , Pyrazoles/administration & dosage , Pyrazoles/metabolism , Pyrimidines/administration & dosage , Pyrimidines/metabolism
15.
Biol Blood Marrow Transplant ; 23(5): 805-812, 2017 May.
Article in English | MEDLINE | ID: mdl-28212937

ABSTRACT

Alemtuzumab conditioning is highly effective at reducing the incidence of acute and chronic graft-versus-host disease (GVHD) in reduced-intensity fludarabine and melphalan transplantation with cyclosporine monotherapy. Less frequent and lower dose scheduling may be used with sibling donors, but an optimal regimen for matched unrelated donors has not been defined. In this retrospective observational study of 313 patients, the incidence and severity of GVHD was compared in patients receiving 3 different dose schedules: the standard 100-mg regimen (20 mg on days -7 to -3), 60 mg (30 mg on days -4 and -2), or 50 mg (10 mg on days -7 to -3). Patients treated with 100 mg, 60 mg, or 50 mg developed acute GVHD grades I to IV with an incidence of 74%, 65%, and 64%, respectively, whereas 36%, 32%, and 41% developed chronic GHVD. An excess of severe acute grades III/IV GVHD was observed in the 50-mg cohort (15% versus 2% to 6%; P = .016). The relative risk of severe acute grade GVHD remained more than 3-fold higher in the 50-mg cohort compared with the 100-mg cohort after adjustment for differences in HLA match, age, gender mismatch, cytomegalovirus risk, and diagnosis (P = .030). The findings indicate that the 60-mg alemtuzumab schedule was comparable with the 100-mg schedule, but more attenuated schedules may increase the risk of severe grade GVHD.


Subject(s)
Alemtuzumab/administration & dosage , Graft vs Host Disease/drug therapy , Adult , Aged , Allografts/chemistry , Allografts/immunology , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , Male , Melphalan/therapeutic use , Middle Aged , Retrospective Studies , Transplantation Conditioning/methods , Unrelated Donors , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use , Young Adult
20.
EJHaem ; 5(4): 825-828, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39157612

ABSTRACT

Pure red cell aplasia (PRCA) is characterised by normocytic normochromic anaemia, reticulocytopenia and reduced erythroid precursors in bone marrow. PRCA as an immune-related adverse event secondary to immune checkpoint inhibitor (ICI) therapy is rare. Steroids are usually used first line to treat ICI-induced PRCA. Here, we report a case of ICI-induced PRCA with no response to steroids but where intravenous (IV) immunoglobulin was successfully used second line. ICI therapy was reinitiated following PRCA resolution. PRCA recurrence did not occur.

SELECTION OF CITATIONS
SEARCH DETAIL