Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 375
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38851188

ABSTRACT

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.

2.
Cell ; 186(6): 1212-1229.e21, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36827974

ABSTRACT

Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.


Subject(s)
Mitochondria , Organogenesis , Animals , Female , Humans , Mice , Pregnancy , Cell Lineage , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Mitochondrial Diseases , Organ Specificity , Embryonic Development , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism
3.
Nature ; 626(7998): 288-293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326594

ABSTRACT

The microscopic origin of high-temperature superconductivity in cuprates remains unknown. It is widely believed that substantial progress could be achieved by better understanding of the pseudogap phase, a normal non-superconducting state of cuprates1,2. In particular, a central issue is whether the pseudogap could originate from strong pairing fluctuations3. Unitary Fermi gases4,5, in which the pseudogap-if it exists-necessarily arises from many-body pairing, offer ideal quantum simulators to address this question. Here we report the observation of a pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the fermion spectral function through momentum-resolved microwave spectroscopy and without spurious effects from final-state interactions. The temperature dependence of the pairing gap, inverse pair lifetime and single-particle scattering rate are quantitatively determined by analysing the spectra. We find a large pseudogap above the superfluid transition temperature. The inverse pair lifetime exhibits a thermally activated exponential behaviour, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, temperature-independent single-particle scattering rate is comparable with that set by the Planckian limit6. Our findings quantitatively characterize the pseudogap in strongly interacting Fermi gases and they lend support for the role of preformed pairing as a precursor to superfluidity.

4.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Article in English | MEDLINE | ID: mdl-37886839

ABSTRACT

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Subject(s)
Heart Injuries , Induced Pluripotent Stem Cells , Myocardial Infarction , Animals , Humans , Mice , Animals, Newborn , Cell Proliferation , Heart , Heart Injuries/metabolism , Induced Pluripotent Stem Cells/metabolism , Mammals , Myocytes, Cardiac/metabolism , Regeneration , Versicans/genetics , Versicans/metabolism
5.
Hum Mol Genet ; 33(1): 91-101, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37815936

ABSTRACT

Mutations affecting the mitochondrial intermembrane space protein CHCHD10 cause human disease, but it is not known why different amino acid substitutions cause markedly different clinical phenotypes, including amyotrophic lateral sclerosis-frontotemporal dementia, spinal muscular atrophy Jokela-type, isolated autosomal dominant mitochondrial myopathy and cardiomyopathy. CHCHD10 mutations have been associated with deletions of mitochondrial DNA (mtDNA deletions), raising the possibility that these explain the clinical variability. Here, we sequenced mtDNA obtained from hearts, skeletal muscle, livers and spinal cords of WT and Chchd10 G58R or S59L knockin mice to characterise the mtDNA deletion signatures of the two mutant lines. We found that the deletion levels were higher in G58R and S59L mice than in WT mice in some tissues depending on the Chchd10 genotype, and the deletion burden increased with age. Furthermore, we observed that the spinal cord was less prone to the development of mtDNA deletions than the other tissues examined. Finally, in addition to accelerating the rate of naturally occurring deletions, Chchd10 mutations also led to the accumulation of a novel set of deletions characterised by shorter direct repeats flanking the deletion breakpoints. Our results indicate that Chchd10 mutations in mice induce tissue-specific deletions which may also contribute to the clinical phenotype associated with these mutations in humans.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Mice , Animals , Mutation , Mitochondria/metabolism , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
6.
Brain ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38574200

ABSTRACT

Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations leading to mitochondrial dysfunction are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E-variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.

7.
J Mol Cell Cardiol ; 191: 7-11, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608929

ABSTRACT

Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.


Subject(s)
Cell Proliferation , Macrophages , Monocytes , Myocytes, Cardiac , Regeneration , Triiodothyronine , Animals , Regeneration/drug effects , Triiodothyronine/pharmacology , Monocytes/metabolism , Monocytes/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Macrophages/metabolism , Macrophages/drug effects , Cell Proliferation/drug effects , Mice , Inflammation/metabolism , Inflammation/pathology , Animals, Newborn , Heart/drug effects , Heart/physiopathology , Mice, Inbred C57BL
8.
Small ; 20(3): e2305727, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37699770

ABSTRACT

Promoting the proton-coupled electron transfer process in order to solve the sluggish carrier migration dynamics is an efficient way to accelerate the photocatalytic CO2 reduction (PCR) process. Herein, through the reduction of Sn4+ by amino and sulfhydryl groups, Sn0 particles are lodged in S-vacancies SnS2 nanosheets. The high conductance of Sn0 particles expedites the collection and transport of photogenerated electrons, activating the surrounding surface of unsaturated sulfur (Sx 2- ) and thus lowering the energy barrier for generation of *COOH. Meanwhile, S-vacancies boost H2 O adsorption while Sx 2- increases CO2 adsorption, as demonstrated by density functional theory (DFT), obtaining a selectivity of 97.88% CO and yield of 295.06 µmol g-1 h-1 without the addition of co-catalysts and sacrificial agents. This work provides a new approach to building a fast electron transfer interface between metal particles and semiconductors, which works in tandem with S-vacancies and Sx 2- to boost the efficiency of photocatalytic CO2 reduction to CO in pure water vapor environment.

9.
Cell Mol Life Sci ; 80(7): 186, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344704

ABSTRACT

Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.


Subject(s)
Bone Morphogenetic Protein 7 , Myocytes, Cardiac , Animals , Humans , Mice , Bone Morphogenetic Protein 7/metabolism , Cell Cycle Checkpoints , Cell Differentiation , Molecular Docking Simulation , Myocytes, Cardiac/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
10.
BMC Ophthalmol ; 24(1): 254, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872161

ABSTRACT

OBJECTIVE: The aim of this study is to elucidate the factors contributing to the occurrence of retinal detachment (RD) following prophylactic vitrectomy in cases of acute retinal necrosis (ARN) syndrome. METHODS: A retrospective examination was undertaken, encompassing the medical records of patients diagnosed with ARN who underwent prophylactic vitreous intervention at the Ophthalmology Department of Wuhan University Renmin Hospital East Campus between October 2019 and September 2023. Subsequently, patients who manifested RD in the postoperative period were identified, and a comprehensive analysis was conducted to ascertain the factors underlying the occurrence of RD post-surgery. RESULTS: This study comprised 14 cases (involving 14 eyes) of patients diagnosed with ARN who underwent prophylactic vitreous intervention. The findings revealed that 4 patients experienced postoperative RD, resulting in an incidence rate of 28.57%. Notably, among these cases, 3 cases of RD manifested in the presence of silicone oil, while 1 case occurred subsequent to the removal of silicone oil. All 4 cases of RD exhibited varied degrees of proliferative vitreoretinopathy. Following the occurrence of RD, all patients underwent a secondary vitreous intervention coupled with silicone oil tamponade, leading to successful reattachment of the retina. However, despite these interventions, there was no significant enhancement observed in postoperative visual outcomes when compared to preoperative levels. CONCLUSION: RD following prophylactic vitrectomy in cases of ARN is not an infrequent occurrence and is primarily linked to the postoperative onset of proliferative vitreoretinopathy.


Subject(s)
Postoperative Complications , Retinal Detachment , Retinal Necrosis Syndrome, Acute , Visual Acuity , Vitrectomy , Humans , Vitrectomy/methods , Retinal Detachment/surgery , Retinal Detachment/etiology , Retinal Necrosis Syndrome, Acute/diagnosis , Retrospective Studies , Male , Female , Middle Aged , Adult , Visual Acuity/physiology , Postoperative Complications/prevention & control , Endotamponade , Aged , Young Adult , Silicone Oils/administration & dosage , Incidence
11.
J Mol Cell Cardiol ; 177: 1-8, 2023 04.
Article in English | MEDLINE | ID: mdl-36801268

ABSTRACT

Inducing endogenous cardiomyocyte proliferation and heart regeneration is a promising strategy to treat ischemic heart failure. The immune response has recently been considered critical in cardiac regeneration. Thus, targeting the immune response is a potent strategy to improve cardiac regeneration and repair after myocardial infarction. Here we reviewed the characteristics of the relationship between the postinjury immune response and heart regenerative capacity and summarized the latest studies focusing on inflammation and heart regeneration to identify potent targets of the immune response and strategies in the immune response to promote cardiac regeneration.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , Myocytes, Cardiac/physiology , Heart/physiology , Myocardial Infarction/therapy , Inflammation , Cell Proliferation
12.
J Mol Cell Cardiol ; 177: 21-27, 2023 04.
Article in English | MEDLINE | ID: mdl-36827872

ABSTRACT

The longevity protein p66Shc is essential for the senescence signaling that is involved in heart regeneration and remodeling. However, the exact role of p66Shc in heart regeneration is unknown. In this study, we found that p66Shc deficiency decreased neonatal mouse cardiomyocyte (CM) proliferation and impeded neonatal heart regeneration after apical resection injury. RNA sequencing and functional verification demonstrated that p66Shc regulated CM proliferation by activating ß-catenin signaling. These findings reveal the critical role of p66Shc in neonatal heart regeneration and provide new insights into senescence signaling in heart regeneration.


Subject(s)
Signal Transduction , Animals , Mice , Phosphorylation , Shc Signaling Adaptor Proteins/genetics , Shc Signaling Adaptor Proteins/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
13.
Biochem Biophys Res Commun ; 660: 73-81, 2023 06 11.
Article in English | MEDLINE | ID: mdl-37068391

ABSTRACT

Cardiac fibrosis is a common pathological feature of cardiac remodelling process with disordered expression of multiple genes and eventually lead to heart failure. Emerging evidence suggests that long noncoding RNAs (lncRNAs) have emerged as critical regulators of various biological processes. However, the exact mechanisms of lncRNAs as mediators in cardiac fibrosis have not been fully elucidated. This study aimed to profile the lncRNA expression pattern in human cardiac fibroblasts (HCFs) with cardiac fibrosis. We treated HCFs with transforming growth factor-ß (TGF-ß) to induce their activation. Then, strand-specific RNA-seq was performed to profile and classify lncRNAs; and perform functional analysis in HCFs. We study the transformation of HCFs with molecular and cell biology methods. Among all identified lncRNA candidates, 176 and 526 lncRNAs were upregulated and downregulated respectively in TGF-ß-stimulated HCFs compared with controls. Functional analyses revealed that the target genes of differentially expressed lncRNAs were mainly related to focal adhesion, metabolic pathways, Hippo signaling pathway, PI3K-Akt signaling pathway, regulation of actin cytoskeleton, and hypertrophic cardiomyopathy. As a representative, novel lncRNAs NONHSAG005537 and NONHSAG017620 inhibited the proliferation, migration, invasion, and transformation of HCFs induced by TGF-ß. Collectively, our study established the expression signature of lncRNAs in cardiac fibrosis and demonstrated the cardioprotective role of NONHSAG005537 and NONHSAG017620 in cardiac fibrosis, providing a promising target for anti-fibrotic therapy.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Fibrosis , Fibroblasts/metabolism , Transforming Growth Factor beta/metabolism
14.
Development ; 147(4)2020 02 17.
Article in English | MEDLINE | ID: mdl-31988189

ABSTRACT

Cellular proliferation is a basic process during organ development, tissue homeostasis and disease progression. Likewise, after injury typically multiple cell lineages respond to various cues and proliferate to initiate repair and/or remodeling of the injured tissue. Unravelling the specific role of proliferation of one cell type and its lineage in the context of the whole organism during tissue regeneration and/or disease progression would provide valuable information on these processes. Here, we report a new genetic system that allows cell proliferation to be inhibited in a tissue-specific manner. We generated Cre- or Dre-inducible p21-GFP (ip21-GFP) transgenic mice that enable experimentally induced permanent cell cycle arrest of specific cell lineages of interest, while genetically marking these cells. This system allows for the inhibition of pathogenic cell proliferation. We found that cardiac fibroblast proliferation inhibition significantly reduced scar formation, and promoted neovascularization and cardiomyocyte survival. Additionally, we found that inhibition of one type of cell proliferation (namely, hepatocytes) induces the lineage conversion of another type cells (i.e. ductal cells) during tissue regeneration. These results validate the use of ip21-GFP mice as a new genetic tool for cell lineage-specific inhibition of cell proliferation in vivo.


Subject(s)
Cell Proliferation , Gene Expression Regulation , Genetic Techniques , Alleles , Animals , Cell Lineage , Cyclin-Dependent Kinase Inhibitor p21/physiology , Female , Fibroblasts/physiology , Green Fluorescent Proteins , Heart/growth & development , Heart/physiology , Hepatocytes/cytology , Hepatocytes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/pathology , Myocytes, Cardiac/cytology
15.
Chem Rec ; 23(10): e202300133, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37166412

ABSTRACT

The design and synthesis of chiral ligands plays an important role in asymmetric catalytic reactions. Over the past decades, various types of chiral phosphine-oxazolines (PHOX ligands) have been developed and have greatly advanced the field of asymmetric catalysis. Novel chiral PHOX ligand with an axis-unfixed biphenyl backbone, developed by our group, have shown interesting coordination behavior and excellent chiral inducing ability in various transition-metal-catalyzed asymmetric reactions. This personal account focuses on our developed axis-unfixed biphenylphosphine-oxazoline ligand (BiphPHOX), including an overview of its design and applications, which will provide inspiration for the exploration of novel ligands and related reactions.

16.
J Nanobiotechnology ; 21(1): 309, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653406

ABSTRACT

Plant-derived exosome-like nanoparticles (PDENs) have been paid great attention in the treatment of ulcerative colitis (UC). As a proof of concept, we isolated and identified Portulaca oleracea L-derived exosome-like nanoparticles (PELNs) from edible Portulaca oleracea L, which exhibited desirable nano-size (~ 160 nm) and a negative zeta potential value (-31.4 mV). Oral administration of PELNs effectively suppressed the expressions of pro-inflammatory cytokines (TNF-α, IL-6, IL-12, and IL-1ß) and myeloperoxidase (MPO), increased levels of the anti-inflammatory cytokine (IL-10), and alleviated acute colitis in dextran sulfate sodium (DSS)-induced C57 mice and IL-10-/- mice. Notably, PELNs exhibited excellent stability and safety within the gastrointestinal tract and displayed specific targeting to inflamed sites in the colons of mice. Mechanistically, oral administration of PELNs played a crucial role in maintaining the diversity and balance of gut microbiota. Furthermore, PELNs treatment enhanced Lactobacillus reuteri growth and elevated indole derivative levels, which might activate the aryl-hydrocarbon receptor (AhR) in conventional CD4+ T cells. This activation downregulated Zbtb7b expression, leading to the reprogramming of conventional CD4+ T cells into double-positive CD4+CD8+T cells (DP CD4+CD8+ T cells). In conclusion, our findings highlighted the potential of orally administered PELNs as a novel, natural, and colon-targeted agent, offering a promising therapeutic approach for managing UC. Schematic illustration of therapeutic effects of oral Portulaca oleracea L -derived natural exosome-like nanoparticles (PELNs) on UC. PELNs treatment enhanced Lactobacillus reuteri growth and elevated indole derivative levels, which activate the aryl-hydrocarbon receptor (AhR) in conventional CD4+ T cells leading to downregulate the expression of Zbtb7b, reprogram of conventional CD4+ T cells into double-positive CD4+CD8+T cells (DP CD4+CD8+ T cells), and decrease the levels of pro-inflammatory cytokines.


Subject(s)
Colitis, Ulcerative , Colitis , Exosomes , Nanoparticles , Portulaca , Animals , Mice , Interleukin-10 , CD8-Positive T-Lymphocytes , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Cytokines , Hydrocarbons , DNA-Binding Proteins , Transcription Factors
17.
Parasitol Res ; 122(8): 1907-1913, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329345

ABSTRACT

Ticks are blood-sucking ectoparasites with significant medical and veterinary importance, capable of transmitting bacteria, protozoa, fungi, and viruses that cause a variety of human and animal diseases worldwide. In the present study, we sequenced the complete mitochondrial (mt) genomes of five hard tick species and analyzed features of their gene contents and genome organizations. The complete mt genomes of Haemaphysalis verticalis, H. flava, H. longicornis, Rhipicephalus sanguineus and Hyalomma asiaticum were 14855 bp, 14689 bp, 14693 bp, 14715 bp and 14722 bp in size, respectively. Their gene contents and arrangements are the same as those of most species of metastriate Ixodida, but distinct from species of genus Ixodes. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes with two different computational algorithms (Bayesian inference and maximum likelihood) revealed the monophylies of the genera Rhipicephalus, Ixodes and Amblyomma, however, rejected the monophyly of the genus Haemaphysalis. To our knowledge, this is the first report of the complete mt genome of H. verticalis. These datasets provide useful mtDNA markers for further studies of the identification and classification of hard ticks.


Subject(s)
Genome, Mitochondrial , Ixodes , Ixodidae , Rhipicephalus sanguineus , Animals , Humans , Ixodidae/genetics , Phylogeny , Bayes Theorem , Rhipicephalus sanguineus/genetics , Ixodes/genetics
18.
Article in English | MEDLINE | ID: mdl-37661517

ABSTRACT

BACKGROUND: Primary non-function (PNF) and early allograft failure (EAF) after liver transplantation (LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function (MEAF), PNF score by King's College (King-PNF) and Balance-and-Risk-Lactate (BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. METHODS: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic (ROC) and the net reclassification improvement (NRI) and integrated discrimination improvement (IDI) analyses. RESULTS: Of all 720 patients, 28 (3.9%) developed PNF and 67 (9.3%) developed EAF in 3 months. The overall early allograft dysfunction (EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0 (3.5-6.3), -2.1 (-2.6 to -1.2), and 5.0 (2.0-11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves (AUCs) of 0.871 and 0.891, superior to BAR-Lac (AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. CONCLUSIONS: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies.

19.
Sheng Li Xue Bao ; 75(6): 946-952, 2023 Dec 25.
Article in Zh | MEDLINE | ID: mdl-38151356

ABSTRACT

Our previous study has shown that p66Shc plays an important role in the process of myocardial regeneration in newborn mice, and p66Shc deficiency leads to weakened myocardial regeneration in newborn mice. This study aims to explore the role of p66Shc protein in myocardial injury repair after myocardial infarction in adult mice, in order to provide a new target for the treatment of myocardial injury after myocardial infarction. Mouse myocardial infarction models of adult wild-type (WT) and p66Shc knockout (KO) were constructed by anterior descending branch ligation. The survival rate and heart-to-body weight ratio of two models were compared and analyzed. Masson's staining was used to identify scar area of injured myocardial tissue, and myocyte area was determined by wheat germ agglutinin (WGA) staining. TUNEL staining was used to detect the cardiomyocyte apoptosis. The protein expression of brain natriuretic peptide (BNP), a common marker of myocardial hypertrophy, was detected by Western blotting. The results showed that there was no significant difference in survival rate, myocardial scar area, myocyte apoptosis, and heart weight to body weight ratio between the WT and p66ShcKO mice after myocardial infarction surgery. Whereas the protein expression level of BNP in the p66ShcKO mice was significantly down-regulated compared with that in the WT mice. These results suggest that, unlike in neonatal mice, the deletion of p66Shc has no significant effect on myocardial injury repair after myocardial infarction in adult mice.


Subject(s)
Myocardial Infarction , Oxidative Stress , Animals , Mice , Body Weight , Cicatrix/metabolism , Mice, Knockout , Myocardial Infarction/genetics , Shc Signaling Adaptor Proteins/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
20.
Syst Parasitol ; 100(5): 571-578, 2023 10.
Article in English | MEDLINE | ID: mdl-37382800

ABSTRACT

The domestic pig louse Haematopinus suis (Linnaeus, 1758) (Phthiraptera: Anoplura) is a common ectoparasite of domestic pigs, which can act as a vector of various infectious disease agents. Despite its significance, the molecular genetics, biology and systematics of H. suis from China have not been studied in detail. In the present study, the entire mitochondrial (mt) genome of H. suis isolate from China was sequenced and compared with that of H. suis isolate from Australia. We identified 37 mt genes located on nine circular mt minichromosomes, 2.9 kb-4.2 kb in size, each containing 2-8 genes and one large non-coding region (NCR) (1,957 bp-2,226 bp). The number of minichromosomes, gene content, and gene order in H. suis isolates from China and Australia are identical. Total sequence identity across coding regions was 96.3% between H. suis isolates from China and Australia. For the 13 protein-coding genes, sequence differences ranged from 2.8%-6.5% consistent nucleotides with amino acids. Our result is H. suis isolates from China and Australia being the same H. suis species. The present study determined the entire mt genome of H. suis from China, providing additional genetic markers for studying the molecular genetics, biology and systematics of domestic pig louse.


Subject(s)
Anoplura , Genome, Mitochondrial , Swine , Animals , Sus scrofa , Genome, Mitochondrial/genetics , Species Specificity , Anoplura/genetics , Insecta/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL