Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Proc Natl Acad Sci U S A ; 120(14): e2220102120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36996103

ABSTRACT

Molecular clocks in the periphery coordinate tissue-specific daily biorhythms by integrating input from the hypothalamic master clock and intracellular metabolic signals. One such key metabolic signal is the cellular concentration of NAD+, which oscillates along with its biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT). NAD+ levels feed back into the clock to influence rhythmicity of biological functions, yet whether this metabolic fine-tuning occurs ubiquitously across cell types and is a core clock feature is unknown. Here, we show that NAMPT-dependent control over the molecular clock varies substantially between tissues. Brown adipose tissue (BAT) requires NAMPT to sustain the amplitude of the core clock, whereas rhythmicity in white adipose tissue (WAT) is only moderately dependent on NAD+ biosynthesis, and the skeletal muscle clock is completely refractory to loss of NAMPT. In BAT and WAT, NAMPT differentially orchestrates oscillation of clock-controlled gene networks and the diurnality of metabolite levels. NAMPT coordinates the rhythmicity of TCA cycle intermediates in BAT, but not in WAT, and loss of NAD+ abolishes these oscillations similarly to high-fat diet-induced circadian disruption. Moreover, adipose NAMPT depletion improved the ability of animals to defend body temperature during cold stress but in a time-of-day-independent manner. Thus, our findings reveal that peripheral molecular clocks and metabolic biorhythms are shaped in a highly tissue-specific manner by NAMPT-dependent NAD+ synthesis.


Subject(s)
NAD , Nicotinamide Phosphoribosyltransferase , Animals , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Circadian Rhythm/physiology , Adipose Tissue, Brown/metabolism , Obesity/metabolism , Cytokines/metabolism
2.
Proc Natl Acad Sci U S A ; 117(38): 23932-23941, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32900951

ABSTRACT

DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.


Subject(s)
Adipose Tissue/metabolism , DEAD-box RNA Helicases/metabolism , Exercise/physiology , Ribonuclease III/metabolism , AMP-Activated Protein Kinases/metabolism , Adaptation, Physiological/physiology , Adipocytes/metabolism , Animals , Cells, Cultured , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , Female , Glycolysis , Humans , Male , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Physical Conditioning, Animal , Ribonuclease III/deficiency , Ribonuclease III/genetics
3.
J Physiol ; 600(4): 885-902, 2022 02.
Article in English | MEDLINE | ID: mdl-34387373

ABSTRACT

KEY POINTS: Afadin is a ubiquitously expressed scaffold protein with a recently discovered role in insulin signalling and glucose metabolism. Insulin-stimulated phosphorylation of Afadin at S1795 occurs in insulin-responsive tissues such as adipose tissue, muscle, liver, pancreas and heart. Afadin abundance and AfadinS1795 phosphorylation are dynamically regulated in metabolic tissues during diet-induced obesity progression. Genetic silencing of AfadinS1795 phosphorylation improves glucose homeostasis in the early stages of diet-induced metabolic dysregulation. AfadinS1795 phosphorylation contributes to the early development of obesity-related complications in mice. ABSTRACT: Obesity is associated with systemic insulin resistance and numerous metabolic disorders. Yet, the mechanisms underlying impaired insulin action during obesity remain to be fully elucidated. Afadin is a multifunctional scaffold protein with the ability to modulate insulin action through its phosphorylation at S1795 in adipocytes. In the present study, we report that insulin-stimulated AfadinS1795 phosphorylation is not restricted to adipose tissues, but is a common signalling event in insulin-responsive tissues including muscle, liver, pancreas and heart. Furthermore, a dynamic regulation of Afadin abundance occurred during diet-induced obesity progression, while its phosphorylation was progressively attenuated. To investigate the role of AfadinS1795 phosphorylation in the regulation of whole-body metabolic homeostasis, we generated a phospho-defective mouse model (Afadin SA) in which the Afadin phosphorylation site was silenced (S1795A) at the whole-body level using CRISPR-Cas9-mediated gene editing. Metabolic characterization of these mice under basal physiological conditions or during a high-fat diet (HFD) challenge revealed that preventing AfadinS1795 phosphorylation improved insulin sensitivity and glucose tolerance and increased liver glycogen storage in the early stage of diet-induced metabolic dysregulation, without affecting body weight. Together, our findings reveal that AfadinS1795 phosphorylation in metabolic tissues is critical during obesity progression and contributes to promote systemic insulin resistance and glucose intolerance in the early phase of diet-induced obesity.


Subject(s)
Insulin Resistance , Animals , Diet, High-Fat , Glucose/metabolism , Homeostasis , Insulin/metabolism , Insulin Resistance/physiology , Mice , Mice, Inbred C57BL , Mice, Obese , Microfilament Proteins , Phosphorylation
4.
J Biol Chem ; 297(6): 101388, 2021 12.
Article in English | MEDLINE | ID: mdl-34762911

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) converts nicotinamide to NAD+. As low hepatic NAD+ levels have been linked to the development of nonalcoholic fatty liver disease, we hypothesized that ablation of hepatic Nampt would affect susceptibility to liver injury in response to diet-induced metabolic stress. Following 3 weeks on a low-methionine and choline-free 60% high-fat diet, hepatocyte-specific Nampt knockout (HNKO) mice accumulated less triglyceride than WT littermates but had increased histological scores for liver inflammation, necrosis, and fibrosis. Surprisingly, liver injury was also observed in HNKO mice on the purified control diet. This HNKO phenotype was associated with decreased abundance of mitochondrial proteins, especially proteins involved in oxidoreductase activity. High-resolution respirometry revealed lower respiratory capacity in purified control diet-fed HNKO liver. In addition, fibrotic area in HNKO liver sections correlated negatively with hepatic NAD+, and liver injury was prevented by supplementation with NAD+ precursors nicotinamide riboside and nicotinic acid. MS-based proteomic analysis revealed that nicotinamide riboside supplementation rescued hepatic levels of oxidoreductase and OXPHOS proteins. Finally, single-nucleus RNA-Seq showed that transcriptional changes in the HNKO liver mainly occurred in hepatocytes, and changes in the hepatocyte transcriptome were associated with liver necrosis. In conclusion, HNKO livers have reduced respiratory capacity, decreased abundance of mitochondrial proteins, and are susceptible to fibrosis because of low NAD+ levels. Our data suggest a critical threshold level of hepatic NAD+ that determines the predisposition to liver injury and supports that NAD+ precursor supplementation can prevent liver injury and nonalcoholic fatty liver disease progression.


Subject(s)
Hepatocytes/metabolism , Mitochondria, Liver/metabolism , NAD/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Cytokines/deficiency , Cytokines/metabolism , Mice , Mice, Knockout , Mitochondria, Liver/genetics , NAD/genetics , Nicotinamide Phosphoribosyltransferase/deficiency , Nicotinamide Phosphoribosyltransferase/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Phosphorylation , Phenotype
5.
Am J Physiol Cell Physiol ; 321(5): C770-C778, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34495765

ABSTRACT

Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin ß4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X did not ameliorate the metabolic disruptions associated with diet induced-obesity, nor did it enhance muscle regeneration in vivo. However, TMSB4X increased osteoblast proliferation and neurite outgrowth, consistent with its WADA classification as a prohibited growth factor. Therefore, we report TMSB4X as a human exerkine with a potential role in cellular cross talk.


Subject(s)
Cell Proliferation/drug effects , Muscle Contraction , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Neuronal Outgrowth/drug effects , Osteoblasts/drug effects , Thymosin/metabolism , Thymosin/pharmacology , Animals , Case-Control Studies , Cell Line, Tumor , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Humans , Insulin Resistance , Male , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Osteoblasts/pathology , Physical Endurance , Proteomics , Signal Transduction , Tandem Mass Spectrometry
6.
Nature ; 512(7513): 190-3, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25043022

ABSTRACT

The Greenlandic population, a small and historically isolated founder population comprising about 57,000 inhabitants, has experienced a dramatic increase in type 2 diabetes (T2D) prevalence during the past 25 years. Motivated by this, we performed association mapping of T2D-related quantitative traits in up to 2,575 Greenlandic individuals without known diabetes. Using array-based genotyping and exome sequencing, we discovered a nonsense p.Arg684Ter variant (in which arginine is replaced by a termination codon) in the gene TBC1D4 with an allele frequency of 17%. Here we show that homozygous carriers of this variant have markedly higher concentrations of plasma glucose (ß = 3.8 mmol l(-1), P = 2.5 × 10(-35)) and serum insulin (ß = 165 pmol l(-1), P = 1.5 × 10(-20)) 2 hours after an oral glucose load compared with individuals with other genotypes (both non-carriers and heterozygous carriers). Furthermore, homozygous carriers have marginally lower concentrations of fasting plasma glucose (ß = -0.18 mmol l(-1), P = 1.1 × 10(-6)) and fasting serum insulin (ß = -8.3 pmol l(-1), P = 0.0014), and their T2D risk is markedly increased (odds ratio (OR) = 10.3, P = 1.6 × 10(-24)). Heterozygous carriers have a moderately higher plasma glucose concentration 2 hours after an oral glucose load than non-carriers (ß = 0.43 mmol l(-1), P = 5.3 × 10(-5)). Analyses of skeletal muscle biopsies showed lower messenger RNA and protein levels of the long isoform of TBC1D4, and lower muscle protein levels of the glucose transporter GLUT4, with increasing number of p.Arg684Ter alleles. These findings are concomitant with a severely decreased insulin-stimulated glucose uptake in muscle, leading to postprandial hyperglycaemia, impaired glucose tolerance and T2D. The observed effect sizes are several times larger than any previous findings in large-scale genome-wide association studies of these traits and constitute further proof of the value of conducting genetic association studies outside the traditional setting of large homogeneous populations.


Subject(s)
Diabetes Mellitus, Type 2/genetics , GTPase-Activating Proteins/genetics , Genetic Variation , Insulin Resistance/genetics , Adult , Blood Glucose/analysis , Codon, Nonsense/genetics , Gene Frequency , Genome-Wide Association Study , Genotype , Greenland , Humans , Insulin/blood , Middle Aged , Muscle, Skeletal/metabolism
7.
Diabetologia ; 62(3): 494-503, 2019 03.
Article in English | MEDLINE | ID: mdl-30506451

ABSTRACT

AIMS/HYPOTHESIS: Lack of insulin and infection/inflammation are the two most common causes of diabetic ketoacidosis (DKA). We used insulin withdrawal followed by insulin administration as a clinical model to define effects on substrate metabolism and to test whether increased levels of counter-regulatory hormones and cytokines and altered adipose tissue signalling participate in the early phases of DKA. METHODS: Nine individuals with type 1 diabetes, without complications, were randomly studied twice, in a crossover design, for 5 h followed by 2.5 h high-dose insulin clamp: (1) insulin-controlled euglycaemia (control) and (2) after 14 h of insulin withdrawal in a university hospital setting. RESULTS: Insulin withdrawal increased levels of glucose (6.1 ± 0.5 vs 18.6 ± 0.5 mmol/l), NEFA, 3-OHB (127 ± 18 vs 1837 ± 298 µmol/l), glucagon, cortisol and growth hormone and decreased HCO3- and pH, without affecting catecholamine or cytokine levels. Whole-body energy expenditure, endogenous glucose production (1.55 ± 0.13 vs 2.70 ± 0.31 mg kg-1 min-1), glucose turnover, non-oxidative glucose disposal, lipid oxidation, palmitate flux (73 [range 39-104] vs 239 [151-474] µmol/min), protein oxidation and phenylalanine flux all increased, whereas glucose oxidation decreased. In adipose tissue, Ser473 phosphorylation of Akt and mRNA levels of G0S2 decreased, whereas CGI-58 (also known as ABHD5) mRNA increased. Protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase phosphorylations were unaltered. Insulin therapy decreased plasma glucose concentrations dramatically after insulin withdrawal, without any detectable effect on net forearm glucose uptake. CONCLUSIONS/INTERPRETATION: Release of counter-regulatory hormones and overall increased catabolism, including lipolysis, are prominent features of preacidotic ketosis induced by insulin withdrawal, and dampening of Akt insulin signalling and transcriptional modulation of ATGL activity are involved. The lack of any increase in net forearm glucose uptake during insulin therapy after insulin withdrawal indicates muscle insulin resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT02077348 FUNDING: This study was supported by Aarhus University and the KETO Study Group/Danish Agency for Science Technology and Innovation.


Subject(s)
Adipose Tissue/metabolism , Cytokines/blood , Diabetes Mellitus, Type 1/drug therapy , Energy Metabolism/physiology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Ketosis/metabolism , Adult , Blood Glucose/metabolism , Cross-Over Studies , Diabetes Mellitus, Type 1/metabolism , Humans , Insulin Resistance/physiology , Lipid Metabolism/physiology , Lipolysis/physiology , Male , Middle Aged , Young Adult
8.
J Physiol ; 597(2): 449-466, 2019 01.
Article in English | MEDLINE | ID: mdl-30414190

ABSTRACT

KEY POINTS: Exercise/exercise training can enhance insulin sensitivity through adaptations in skeletal muscle, the primary site of insulin-mediated glucose disposal; however, in humans the range of improvement can vary substantially. The purpose of this study was to determine if obesity influences the magnitude of the exercise response in relation to improving insulin sensitivity in human skeletal muscle. Electrical pulse stimulation (EPS; 24 h) of primary human skeletal muscle myotubes improved insulin action in tissue from both lean and severely obese individuals, but responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and increased AMP accumulation and AMPK Thr172 phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects. ABSTRACT: Exercise/muscle contraction can enhance whole-body insulin sensitivity; however, in humans the range of improvements can vary substantially. In order, to determine if obesity influences the magnitude of the exercise response, this study compared the effects of electrical pulse stimulation (EPS)-induced contractile activity upon primary myotubes derived from lean and severely obese (BMI ≥ 40 kg/m2 ) women. Prior to muscle contraction, insulin action was compromised in myotubes from the severely obese as was evident from reduced insulin-stimulated glycogen synthesis, glucose oxidation, glucose uptake, insulin signal transduction (IRS1, Akt, TBC1D4), and insulin-stimulated GLUT4 translocation. EPS (24 h) increased AMP, IMP, AMPK Thr172 phosphorylation, PGC1α content, and insulin action in myotubes of both the lean and severely obese subjects. However, despite normalizing indices of insulin action to levels seen in the lean control (non-EPS) condition, responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and EPS increased AMP accumulation and AMPK Thr172 phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects.


Subject(s)
Insulin/metabolism , Muscle Fibers, Skeletal/metabolism , Obesity/metabolism , Adult , Cells, Cultured , Electric Stimulation , Exercise/physiology , Female , Glucose/metabolism , Humans , Muscle Contraction/physiology , Obesity/physiopathology , Signal Transduction
9.
Am J Physiol Endocrinol Metab ; 316(1): E34-E42, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30325658

ABSTRACT

The lipolytic effects of growth hormone (GH) have been known for half a century and play an important physiological role for substrate metabolism during fasting. In addition, sustained GH-induced lipolysis is causally linked to insulin resistance. However, the underlying molecular mechanisms remain elusive. In the present study, we obtained experimental data in human subjects and used human adipose-derived stromal vascular cells (hADSCs) as a model system to elucidate GH-triggered molecular signaling that stimulates adipose tissue lipolysis and insulin resistance in human adipocytes. We discovered that GH downregulates the expression of fat-specific protein (FSP27), a negative regulator of lipolysis, by impairing the transcriptional ability of the master transcriptional regulator, peroxisome proliferator-activated receptor-γ (PPARγ) via MEK/ERK activation. Ultimately, GH treatment promotes phosphorylation of PPARγ at Ser273 and causes its translocation from nucleus to the cytosol. Surprisingly, FSP27 overexpression inhibited PPARγ Ser273 phosphorylation and promoted its nuclear retention. GH antagonist treatment had similar effects. Our study identifies a novel signaling mechanism by which GH transcriptionally induces lipolysis via the MEK/ERK pathway that acts along PPARγ-FSP27 in human adipose tissue.


Subject(s)
Adipocytes, White/metabolism , Human Growth Hormone/metabolism , Lipolysis/genetics , MAP Kinase Signaling System , PPAR gamma/metabolism , Proteins/genetics , Apoptosis Regulatory Proteins , Gene Expression Regulation , Humans , In Vitro Techniques , Male , Phosphorylation , Proteins/metabolism , Young Adult
10.
Diabetologia ; 60(1): 143-152, 2017 01.
Article in English | MEDLINE | ID: mdl-27734104

ABSTRACT

AIMS/HYPOTHESIS: The aims of this study were to determine the role of lipolysis in hypoglycaemia and define the underlying intracellular mechanisms. METHODS: Nine healthy volunteers were randomised to treatment order of three different treatments (crossover design). Treatments were: (1) saline control; (2) hyperinsulinaemic hypoglycaemia (HH; i.v. bolus of 0.1 U/kg insulin); and (3) hyperinsulinaemic euglycaemia (HE; i.v. bolus of 0.1 U/kg insulin and 20% glucose). Inclusion criteria were that volunteers were healthy, aged >18 years, had a BMI between 19 and 26 kg/m2, and provided both written and oral informed consent. Exclusion criteria were the presence of a known chronic disease (including diabetes mellitus, epilepsy, ischaemic heart disease and cardiac arrhythmias) and regular use of prescription medication. The data was collected at the medical research facilities at Aarhus University Hospital, Denmark. The primary outcome was palmitic acid flux. Participants were blinded to intervention order, but caregivers were not. RESULTS: Adrenaline (epinephrine) and glucagon concentrations were higher during HH than during both HE and control treatments. NEFA levels and lipid oxidation rates (determined by indirect calorimetry) returned to control levels after 105 min. Palmitate flux was increased to control levels during HH (p = NS) and was more than twofold higher than during HE (overall mean difference between HH vs HE, 114 [95% CI 64, 165 µmol/min]; p < 0.001). In subcutaneous adipose tissue biopsies, we found elevated levels of hormone-sensitive lipase (HSL) and perilipin-1 phosphorylation 30 min after insulin injection during HH compared with both control and HE. There were no changes in the levels of adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58) or G0/G1 switch gene 2 (G0S2) proteins. Insulin-stimulated phosphorylation of Akt and mTOR were unaffected by hypoglycaemia. Expression of the G0S2 gene increased during HE and HH compared with control, without changes in ATGL (also known as PNPLA2) or CGI-58 (also known as ABHD5) mRNA levels. CONCLUSIONS/INTERPRETATION: These findings suggest that NEFAs become a major fuel source during insulin-induced hypoglycaemia and that lipolysis may be an important component of the counter-regulatory response. These effects appear to be mediated by rapid stimulation of protein kinase A (PKA) and HSL, compatible with activation of the ß-adrenergic catecholamine signalling pathway. TRIAL REGISTRATION: ClinicalTrials.gov NCT01919788 FUNDING: : The study was funded by Aarhus University, the Novo Nordisk Foundation and the KETO Study Group/Danish Agency for Science Technology and Innovation (grant no. 0603-00479, to NM).


Subject(s)
Adipose Tissue/metabolism , Hypoglycemia/chemically induced , Hypoglycemia/physiopathology , Insulin/pharmacology , Lipolysis/physiology , Adolescent , Adult , Blood Glucose/metabolism , C-Peptide/blood , Cross-Over Studies , Epinephrine/blood , Fatty Acids, Nonesterified/blood , Female , Glucagon/blood , Humans , Insulin/blood , Lactic Acid/blood , Lipid Metabolism/physiology , Lipid Peroxidation/physiology , Male , Norepinephrine/blood , Young Adult
11.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37012386

ABSTRACT

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

12.
iScience ; 25(2): 103863, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198907

ABSTRACT

In clinical trials, oral supplementation with nicotinamide riboside (NR) fails to increase muscle mitochondrial respiratory capacity and insulin sensitivity but also does not increase muscle NAD+ levels. This study tests the feasibility of chronically elevating skeletal muscle NAD+ in mice and investigates the putative effects on mitochondrial respiratory capacity, insulin sensitivity, and gene expression. Accordingly, to improve bioavailability to skeletal muscle, we developed an experimental model for administering NR repeatedly through a jugular vein catheter. Mice on a Western diet were treated with various combinations of NR, pterostilbene (PT), and voluntary wheel running, but the metabolic effects of NR and PT treatment were modest. We conclude that the chronic elevation of skeletal muscle NAD+ by the intravenous injection of NR is possible but does not affect muscle respiratory capacity or insulin sensitivity in either sedentary or physically active mice. Our data have implications for NAD+ precursor supplementation regimens.

13.
Pediatr Nephrol ; 25(4): 705-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19902270

ABSTRACT

Skeletal muscle is the major constituent of lean body mass and a major determinant of energy expenditure both at rest and during physical activity. Growth hormone, in turn, influences muscle mass as well as energy expenditure. Growth hormone substitution in adults increases muscle mass by 5-10%, but part of the effect is attributed to rehydration rather than protein accretion. In addition, GH regulates substrate metabolism in muscle and in particular antagonizes insulin-stimulated glucose disposal. This effect is linked to increased free fatty acid (FFA) flux but the molecular mechanisms remain unclear. During fasting, GH-induced insulin resistance may be favorable by reducing the demand of gluconeogenesis from protein. But in the postprandial phase, GH exposure may compromise glucose tolerance via the same mechanisms. Understanding the mechanisms whereby GH antagonizes insulin-stimulated glucose disposal in muscle is an important future research field with implications for a variety of clinical conditions ranging from malnutrition to obesity and type 2 diabetes.


Subject(s)
Adipose Tissue/physiology , Human Growth Hormone/physiology , Muscle, Skeletal/physiology , Adipose Tissue/drug effects , Fasting/metabolism , Fatty Acids, Nonesterified/metabolism , Glucose/metabolism , Hormone Replacement Therapy , Human Growth Hormone/administration & dosage , Humans , Lipid Metabolism/drug effects , Muscle, Skeletal/drug effects , Proteins/metabolism , Signal Transduction
14.
Physiol Rep ; 7(12): e14139, 2019 07.
Article in English | MEDLINE | ID: mdl-31207144

ABSTRACT

Aging decreases skeletal muscle mass and strength, but aerobic and resistance exercise training maintains skeletal muscle function. NAD+ is a coenzyme for ATP production and a required substrate for enzymes regulating cellular homeostasis. In skeletal muscle, NAD+ is mainly generated by the NAD+ salvage pathway in which nicotinamide phosphoribosyltransferase (NAMPT) is rate-limiting. NAMPT decreases with age in human skeletal muscle, and aerobic exercise training increases NAMPT levels in young men. However, whether distinct modes of exercise training increase NAMPT levels in both young and old people is unknown. We assessed the effects of 12 weeks of aerobic and resistance exercise training on skeletal muscle abundance of NAMPT, nicotinamide riboside kinase 2 (NRK2), and nicotinamide mononucleotide adenylyltransferase (NMNAT) 1 and 3 in young (≤35 years) and older (≥55 years) individuals. NAMPT in skeletal muscle correlated negatively with age (r2  = 0.297, P < 0.001, n = 57), and VO2 peak was the best predictor of NAMPT levels. Moreover, aerobic exercise training increased NAMPT abundance 12% and 28% in young and older individuals, respectively, whereas resistance exercise training increased NAMPT abundance 25% and 30% in young and in older individuals, respectively. None of the other proteins changed with exercise training. In a separate cohort of young and old people, levels of NAMPT, NRK1, and NMNAT1/2 in abdominal subcutaneous adipose tissue were not affected by either age or 6 weeks of high-intensity interval training. Collectively, exercise training reverses the age-dependent decline in skeletal muscle NAMPT abundance, and our findings highlight the value of exercise training in ameliorating age-associated deterioration of skeletal muscle function.


Subject(s)
Aging/physiology , Exercise Therapy/methods , Muscle, Skeletal/physiology , NAD/metabolism , Adipose Tissue/enzymology , Adolescent , Adult , Aged , Aged, 80 and over , Anthropometry/methods , Blood Glucose/metabolism , Cytokines/metabolism , Female , Humans , Insulin/blood , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Muscle, Skeletal/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Resistance Training , Young Adult
15.
Basic Clin Pharmacol Toxicol ; 123(6): 732-738, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29956485

ABSTRACT

The use of anaesthetics severely influences substrate metabolism. This poses challenges for patients in clinical settings and for the use of animals in diabetes research. Sevoflurane can affect regulation of glucose homoeostasis at several steps, but the tissue-specific response remains to be determined. The aim of the study was to investigate the pharmacological effect of sevoflurane anaesthesia on glucose homoeostasis during hyperinsulinaemic clamp conditions, the gold standard method for assessment of whole-body insulin sensitivity. Conscious mice (n = 6) and mice under sevoflurane anaesthesia (n = 8) underwent a hyperinsulinaemic clamp where constant infusion of insulin and donor blood was administered during variable glucose infusion to maintain isoglycaemia. 2-[1-14 C]-deoxy-D-glucose was infused to determine tissue-specific uptake of glucose in adipose tissue, heart, brain and skeletal muscle. Sevoflurane anaesthesia severely impaired insulin-stimulated whole-body glucose uptake demonstrated by a 50% lower glucose infusion rate (GIR). This was associated with decreased glucose uptake in brain, soleus, triceps and gastrocnemius muscles in sevoflurane-anaesthetized mice compared to conscious mice. Plasma-free fatty acids (FFA), a potent inducer of insulin resistance, increased by 42% in mice during sevoflurane anaesthesia. In addition, insulin secretion from pancreatic ß-cell was lower in fasted, anaesthetized mice. Sevoflurane anaesthesia impairs insulin secretion, induces insulin resistance in mice and reduces glucose uptake in non-insulin-sensitive tissue like the brain. The underlying mechanisms may involve sevoflurane-induced mobilization of FFA.


Subject(s)
Anesthetics, Inhalation/pharmacology , Glucose/antagonists & inhibitors , Insulin Antagonists/pharmacology , Insulin/metabolism , Sevoflurane/pharmacology , Animals , Blood Glucose/analysis , Fatty Acids, Nonesterified/blood , Glucose/metabolism , Glucose Clamp Technique , Hyperglycemia/chemically induced , Insulin/blood , Insulin Resistance , Male , Mice , Mice, Inbred C57BL
16.
Mol Metab ; 11: 160-177, 2018 05.
Article in English | MEDLINE | ID: mdl-29525407

ABSTRACT

OBJECTIVE: Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. METHODS: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. RESULTS: We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). CONCLUSIONS: Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Muscle, Skeletal/metabolism , N-Acetylglucosaminyltransferases/metabolism , Adipose Tissue/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Homeostasis , Humans , Interleukin-15/blood , Interleukin-15/genetics , Interleukin-15/metabolism , Mice , N-Acetylglucosaminyltransferases/genetics
17.
Physiol Rep ; 4(8)2016 Apr.
Article in English | MEDLINE | ID: mdl-27117803

ABSTRACT

Prior to hibernation, the brown bear (Ursus arctos) exhibits unparalleled weight gain. Unlike humans, weight gain in bears is associated with lower levels of circulating free fatty acids (FFA) and increased insulin sensitivity. Understanding how free-ranging brown bears suppress lipolysis when gaining weight may therefore provide novel insight toward the development of human therapies. Blood and subcutaneous adipose tissue were collected from immobilized free-ranging brown bears (fitted with GPS-collars) during hibernation in winter and from the same bears during the active period in summer in Dalarna, Sweden. The expression of lipid droplet-associated proteins in adipose tissue was examined under the hypothesis that bears suppress lipolysis during summer while gaining weight by increased expression of negative regulators of lipolysis. Adipose triglyceride lipase (ATGL) expression did not differ between seasons, but in contrast, the expression of ATGL coactivator Comparative gene identification-58 (CGI-58) was lower in summer. In addition, the expression of the negative regulators of lipolysis, G0S2 and cell-death inducing DNA fragmentation factor-a-like effector (CIDE)C markedly increased during summer. Free-ranging brown bears display potent upregulation of inhibitors of lipolysis in adipose tissue during summer. This is a potential mechanism for increased insulin sensitivity during weight gain and G0S2 may serve as a target to modulate insulin sensitivity.


Subject(s)
Adaptation, Physiological/physiology , Adipose Tissue/metabolism , Cell Cycle Proteins/biosynthesis , Hibernation/physiology , Lipolysis/physiology , Ursidae , Animals , Blotting, Western , Fatty Acids, Nonesterified/blood , Female , Insulin Resistance/physiology , Male
18.
Diabetes ; 65(5): 1380-6, 2016 05.
Article in English | MEDLINE | ID: mdl-26884439

ABSTRACT

Most often, diabetic ketoacidosis (DKA) in adults results from insufficient insulin administration and acute infection. DKA is assumed to release proinflammatory cytokines and stress hormones that stimulate lipolysis and ketogenesis. We tested whether this perception of DKA can be reproduced in an experimental human model by using combined insulin deficiency and acute inflammation and tested which intracellular mediators of lipolysis are affected in adipose tissue. Nine subjects with type 1 diabetes were studied twice: 1) insulin-controlled euglycemia and 2) insulin deprivation and endotoxin administration (KET). During KET, serum tumor necrosis factor-α, cortisol, glucagon, and growth hormone levels increased, and free fatty acids and 3-hydroxybutyrate concentrations and the rate of lipolysis rose markedly. Serum bicarbonate and pH decreased. Adipose tissue mRNA contents of comparative gene identification-58 (CGI-58) increased and G0/G1 switch 2 gene (G0S2) mRNA decreased robustly. Neither protein levels of adipose triglyceride lipase (ATGL) nor phosphorylations of hormone-sensitive lipase were altered. The clinical picture of incipient DKA in adults can be reproduced by combined insulin deficiency and endotoxin-induced acute inflammation. The precipitating steps involve the release of proinflammatory cytokines and stress hormones, increased lipolysis, and decreased G0S2 and increased CGI-58 mRNA contents in adipose tissue, compatible with latent ATGL stimulation.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Diabetic Ketoacidosis/immunology , Lipolysis , Models, Immunological , Panniculitis/immunology , Signal Transduction , Subcutaneous Fat, Abdominal/immunology , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adult , Biopsy , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cross-Over Studies , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetic Ketoacidosis/metabolism , Diabetic Ketoacidosis/pathology , Diabetic Ketoacidosis/prevention & control , Endotoxins/toxicity , Gene Expression Regulation/drug effects , Humans , Hyperglycemia/chemically induced , Hyperglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/therapeutic use , Insulin, Long-Acting/administration & dosage , Insulin, Long-Acting/therapeutic use , Insulin, Short-Acting/administration & dosage , Insulin, Short-Acting/therapeutic use , Lipolysis/drug effects , Male , Panniculitis/drug therapy , Panniculitis/metabolism , Panniculitis/pathology , Signal Transduction/drug effects , Subcutaneous Fat, Abdominal/drug effects , Subcutaneous Fat, Abdominal/metabolism , Subcutaneous Fat, Abdominal/pathology , Young Adult
19.
Eur J Endocrinol ; 175(5): 455-65, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27562403

ABSTRACT

OBJECTIVE: Acute and chronic inflammatory and metabolic responses are generated by lipopolysaccharide (LPS) during acute illness and in the pathogenesis of the metabolic syndrome, type 2 diabetes and cardiovascular disease, but whether these responses depend on intact pituitary release of hormones are not clearly identified. We compared the metabolic effects of LPS in hypopituitary patients (HPs) (in the absence of growth hormone (GH) and ACTH responses) and healthy control subjects (CTR) (with normal pituitary hormone responses). DESIGN: Single-blind randomized. METHODS: We compared the effects of LPS on glucose, protein and lipid metabolism in eight HP and eight matched CTR twice during 4-h basal and 2-h hyperinsulinemic-euglycemic clamp conditions with muscle and fat biopsies in each period during infusion with saline or LPS. RESULTS: LPS increased cortisol and GH levels in CTR but not in HP. Also, it increased whole-body palmitate fluxes (3-fold) and decreased palmitate-specific activity (SA) 40-50% in CTR, but not in HP. G(0)/G(1) Switch Gene 2 (G0S2 - an inhibitor of lipolysis) adipose tissue (AT) mRNA was decreased in CTR. Although LPS increased phenylalanine fluxes significantly more in CTR, there was no difference in glucose metabolism between groups and intramyocellular insulin signaling was unaltered in both groups. CONCLUSIONS: LPS increased indices of lipolysis and amino acid/protein fluxes significantly more in CTR compared with HP and decreased adipocyte G0S2 mRNA only in CTR. Thus, in humans intact pituitary function and appropriate cortisol and GH release are crucial components of the metabolic response to LPS.


Subject(s)
Blood Glucose/metabolism , Hydrocortisone/blood , Hypopituitarism/metabolism , Lipid Metabolism/drug effects , Lipopolysaccharides/pharmacology , Pituitary Gland/drug effects , Female , Glucose Clamp Technique , Healthy Volunteers , Humans , Lipolysis/drug effects , Male , Middle Aged , Pituitary Gland/metabolism , Single-Blind Method
20.
Metabolism ; 65(12): 1706-1719, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27832859

ABSTRACT

BACKGROUND: The obesogenic potential of high-fat diets (HFD) in rodents is attenuated when the protein:carbohydrate ratio is increased. However, it is not known if intake of an HFD irrespective of the protein:carbohydrate ratio and in the absence of weight gain, affects glucose homeostasis and the gut microbiota. METHODS: We fed C57BL6/J mice 3 different HFDs with decreasing protein:carbohydrate ratios for 8weeks and compared the results to a LFD reference group. We analyzed the gut microbiota composition by 16S rDNA amplicon sequencing and the intestinal gene expression by real-time PCR. Whole body glucose homeostasis was evaluated by insulin and glucose tolerance tests as well as by a hyperinsulinemic euglycemic clamp experiment. RESULTS: Compared with LFD-fed reference mice, HFD-fed mice, irrespective of protein:carbohydrate ratio, exhibited impaired glucose tolerance, whereas no differences were observed during insulin tolerance tests. The hyperinsulinemic euglycemic clamp revealed tissue-specific effects on glucose homeostasis in all HFD-fed groups. HFD-fed mice exhibited decreased insulin-stimulated glucose uptake in white but not in brown adipose tissue, and sustained endogenous glucose production under insulin-stimulated conditions. We observed no impairment of insulin-stimulated glucose uptake in skeletal muscles of different fiber type composition. HFD-feeding altered the gut microbiota composition paralleled by increased expression of pro-inflammatory cytokines and genes involved in gluconeogenesis in intestinal epithelial cells of the jejunum. CONCLUSIONS: Intake of a HFD profoundly affected glucose homeostasis, gut inflammatory responses, and gut microbiota composition in the absence of fat mass accretion.


Subject(s)
Dietary Fats/pharmacology , Inflammation/chemically induced , Insulin Resistance , Intestines/pathology , Weight Gain , Adipose Tissue, White/metabolism , Animals , Blood Glucose/metabolism , Blood Glucose/physiology , Glucose Intolerance , Homeostasis/drug effects , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Microbiota/drug effects , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL