Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(19)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39409256

ABSTRACT

In this paper, we present the design and fabrication of a novel chip-on-tip catheter, which uses a microcamera and optical fibres to capture in vivo images in a beating porcine heart thanks to a saline flush to clear the blood field. Here, we demonstrate the medical utility and mechanical robustness of this catheter platform system, which could be used for other optical diagnostic techniques, surgical guidance, and clinical navigation. We also discuss some of the challenges and system requirements associated with developing a miniature prototype for such a study and present assembly instructions. Methods of clearing the blood field are discussed, including an integrated flush channel at the distal end. This permits the capture of images of the endocardial walls. The device was navigated under fluoroscopic guiding, through a guiding catheter to various locations of the heart, where images were successfully acquired. Images were captured at the intra-atrial septum, in the left atrium after a trans-septal cross procedure, and in the left ventricle, which are, to the best of our knowledge, the first images captured in an in vivo beating heart using endoscopic techniques.


Subject(s)
Endoscopy , Equipment Design , Animals , Swine , Endoscopy/methods , Endoscopy/instrumentation , Catheters , Heart/diagnostic imaging
2.
Opt Express ; 30(10): 16572-16584, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221497

ABSTRACT

Non-linear materials such as upconverting nanoparticles (UCNPs) are emerging technology with fast-growing applications in various fields. The power density dependence of the emission quantum yield (QY) of these non-linear materials makes them challenging to characterize using currently available commercial QY systems. We propose a multimodal system to measure QY over a wide dynamic range (1:104), which takes into account and compensates for various distorting parameters (scattering, beam profile, inner filter effect and bandwidth of emission lines). For this, a beam shaping approach enabling speckle free beam profiles of two different sizes (530 µm or 106 µm) was employed. This provides low noise high-resolution QY curves. In particular, at low power densities, a signal-to-noise ratio of >50 was found. A Tm-based core-shell UCNP with excitation at 976 nm and emission at 804 nm was investigated with the system.

3.
Micromachines (Basel) ; 14(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37241685

ABSTRACT

In vivo tissue imaging is an essential tool for medical diagnosis, surgical guidance, and treatment. However, specular reflections caused by glossy tissue surfaces can significantly degrade image quality and hinder the accuracy of imaging systems. In this work, we further the miniaturisation of specular reflection reduction techniques using micro cameras, which have the potential to act as intra-operative supportive tools for clinicians. In order to remove these specular reflections, two small form factor camera probes, handheld at 10 mm footprint and miniaturisable to 2.3 mm, are developed using different modalities, with line-of-sight to further miniaturisation. (1) The sample is illuminated via multi-flash technique from four different positions, causing a shift in reflections which are then filtered out in a post-processing image reconstruction step. (2) The cross-polarisation technique integrates orthogonal polarisers onto the tip of the illumination fibres and camera, respectively, to filter out the polarisation maintaining reflections. These form part of a portable imaging system that is capable of rapid image acquisition using different illumination wavelengths, and employs techniques that lend themselves well to further footprint reduction. We demonstrate the efficacy of the proposed system with validating experiments on tissue-mimicking phantoms with high surface reflection, as well as on excised human breast tissue. We show that both methods can provide clear and detailed images of tissue structures along with the effective removal of distortion or artefacts caused by specular reflections. Our results suggest that the proposed system can improve the image quality of miniature in vivo tissue imaging systems and reveal underlying feature information at depth, for both human and machine observers, leading to better diagnosis and treatment outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL