Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Proc Natl Acad Sci U S A ; 119(44): e2209721119, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36279457

ABSTRACT

The imaginary Poynting momentum (IPM) of light has been captivated as an unusual origin of optical forces. However, the IPM force is predicted only for dipolar magnetoelectric particles that are hardly used in optical manipulation experiments. Here, we report a whole family of high-order IPM forces for not only magnetoelectric but also generic Mie particles, assisted with their excited higher multipoles within. Such optomechanical manifestations derive from a nonlocal contribution of the IPM to the optical force, which can be remarkable even when the incident IPM is small. We observe the high-order optomechanics in a structured light beam, which, despite carrying no angular momentum, is able to set normal microparticles into continuous rotation. Our results provide unambiguous evidence of the ponderomotive nature of the IPM, expand the classification of optical forces, and open new possibilities for levitated optomechanics and micromanipulations.

2.
Nano Lett ; 22(4): 1769-1777, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35156826

ABSTRACT

Circularly polarized light carries spin angular momentum, so it can exert an optical torque on the polarization-anisotropic particle by the spin momentum transfer. Here, we show that giant positive and negative optical torques on Mie-resonant (gain) particles arise from the emergence of superhybrid modes with magnetic multipoles and electric toroidal moments, excited by linearly polarized beams. Anomalous positive and negative torques on particles (doped with judicious amount of dye molecules) are over 800 and 200 times larger than the ordinary lossy counterparts, respectively. Meanwhile, a rotational motor can be configured by switching the s- and p-polarized beams, exhibiting opposite optical torques. These giant and reversed optical torques are unveiled for the first time in the scattering spectrum, paving another avenue toward exploring unprecedented physics of hybrid and superhybrid multipoles in metaoptics and optical manipulations.

3.
Phys Rev Lett ; 129(5): 053902, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35960581

ABSTRACT

Elliptically polarized light waves carry the spin angular momentum (SAM), so they can exert optical torques on nanoparticles. Usually, the rotation follows the same direction as the SAM due to momentum conservation. It is counterintuitive to observe the reversal of optical torque acting on an ordinary dielectric nanoparticle illuminated by an elliptically or circularly polarized light wave. Here, we demonstrate that negative optical torques, which are opposite to the direction of SAM, can ubiquitously emerge when elliptically polarized light waves are impinged on dielectric nanoparticles obliquely. Intriguingly, the rotation can be switched between clockwise and counterclockwise directions by controlling the incident angle of light. Our study suggests a new playground to harness polarization-dependent optical force and torque for advancing optical manipulations.

4.
Phys Rev Lett ; 125(4): 043901, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32794795

ABSTRACT

Strong mode coupling and Fano resonances arisen from exceptional interaction between resonant modes in single nanostructures have raised much attention for their advantages in nonlinear optics, sensing, etc. Individual electromagnetic multipole modes such as quadrupoles, octupoles, and their counterparts from mode coupling (toroidal dipole and nonradiating anapole mode) have been well investigated in isolated or coupled nanostructures with access to high Q factors in bound states in the continuum. Albeit the extensive study on ordinary dielectric particles, intriguing aspects of light-matter interactions in single chiral nanostructures is lacking. Here, we unveil that extraordinary multipoles can be simultaneously superpositioned in a chiral nanocylinder, such as two toroidal dipoles with opposite moments, and electric and magnetic sextupoles. The induced optical lateral forces and their scattering cross sections can thus be either significantly enhanced in the presence of those multipoles with high-Q factors, or suppressed by the bound states in the continuum. This work for the first time reveals the complex correlation between multipolar effects, chiral coupling, and optical lateral force, providing a distinct way for advanced optical manipulation.

5.
Phys Rev Lett ; 124(14): 143901, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32338962

ABSTRACT

We report an ingenious mechanism to obtain robust optical pulling force by a single plane wave via engineering the topology of light momentum in the background. The underlying physics is found to be the topological transition of the light momentum from a usual convex shape to a starlike concave shape in the carefully designed background, such as a photonic crystal structure. The principle and results reported here shed insightful concepts concerning optical pulling, and pave the way for a new class of advanced optical manipulation technique, with potential applications of drug delivery and cell sorting.

6.
Phys Rev Lett ; 123(23): 233902, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868432

ABSTRACT

The momentum of light beams can possess azimuthal densities, circulating around the beam axis and inducing intriguing mechanical effects in local light-matter interaction. Belinfante's spin momentum loops in circularly polarized beams, while the canonical momentum spirals in helically phased beams. However, a similar behavior of their imaginary counterpart, the so-called imaginary Poynting momentum (IPM), has not yet emerged. The foremost purpose of the present work is to put forward the discovery of this IPM vortex. We show that a simple superposition of radially and azimuthally polarized beams can form an IPM of completely azimuthal density. Additionally, the azimuthal IPM density can exist with a donut beam-intensity distribution and even with a vanishing azimuthal component of all other momenta. This uncovers the existence of a new mechanical effect which broadens the area of optical micromanipulation by achieving optical rotation of isotropic spheres, in the absence of both spin and orbital angular momenta. Our findings enrich the local dynamic properties of electromagnetic fields, highlighting the rotational action of their IPM, and thus its mechanical effect on microparticles and nanoparticles.

7.
Phys Rev Lett ; 120(12): 123901, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694063

ABSTRACT

We achieve long-range and continuous optical pulling in a periodic photonic crystal background, which supports a unique Bloch mode with the self-collimation effect. Most interestingly, the pulling force reported here is mainly contributed by the intensity gradient force originating from the self-induced backaction of the object to the self-collimation mode. This force is sharply distinguished from the widely held conception of optical tractor beams based on the scattering force. Also, this pulling force is insensitive to the angle of incidence and can pull multiple objects simultaneously.

8.
Opt Lett ; 40(13): 3021-4, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26125357

ABSTRACT

We establish the equations for the time-averaged optical torque on dipolar bi-isotropic particles. Due to the interference of the scattered fields, it has a term additional to the one that is commonly employed in theory and experiments. Its consequences for conservation of energy, angular momentum, and effects like negative torques are discussed.

9.
J Opt Soc Am A Opt Image Sci Vis ; 31(9): 1984-92, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25401438

ABSTRACT

In this work we address, first, the optical force on a magnetodielectric particle on a flat dielectric surface due to an evanescent Bessel beam and, second, the effects on the force of multiple scattering with the substrate. For the first question we find analytical solutions showing that due to the interference of the excited electric and magnetic particle dipoles, the vertical force unusually pushes the object out from the plane. The incident wavelength rules whether or not the illumination constitutes an optical trap. As for the second problem, we make a 2D study with a single evanescent plane wave, and we present the Kerker conditions (so far established for spheres) for magnetodielectric cylinders, showing that in p polarization these conditions are practically reproduced by the latter particles and are associated to minima of the horizontal and vertical forces.

10.
J Opt Soc Am A Opt Image Sci Vis ; 31(1): 206-16, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24561957

ABSTRACT

We present a theory and computation method of radiation pressure from partially coherent light by establishing a coherent mode representation of the radiation forces. This is illustrated with the near field emitted from a Gaussian Schell model source, mechanically acting on a single cylinder with magnetodielectric behavior, or on a photonic molecule constituted by a pair of such cylinders. Thus after studying the force produced by a single particle, we address the effects of the spatial coherence on the bonding and antibonding states of two particles. The coherence length manifests the critical limitation of the contribution of evanescent modes to the scattered fields, and hence to the nature and strength of the electromagnetic forces, even when electric and/or magnetic partial wave resonances are excited.

11.
Opt Lett ; 38(1): 58-60, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23282837

ABSTRACT

We investigate the role of the source coherence length in the two alternative definitions, [Phys. Rev. E 66, 016615 (2002)] and [Opt. Commun.248, 333 (2005)], respectively, on the degree of polarization of a three-dimensional near field emitted by a random planar source. It is demonstrated that for the wide variety of statistically homogeneous sources, there are regimes where both definitions are identical. In particular, this occurs for fields from δ-correlated, such as thermal sources. Further, we discuss how the excitation of surface waves influence whether those two definitions coincide.

12.
J Opt Soc Am A Opt Image Sci Vis ; 29(7): 1389-98, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22751405

ABSTRACT

We put forward a theory on the optical force exerted upon a dipolar particle by a stationary and ergodic partially coherent light field. We show through a rigorous analysis that the ensemble averaged electromagnetic force is given in terms of a partial gradient of the space-variable diagonal elements of the coherence tensor. Further, by following this result we characterize the conservative and nonconservative components of this force. In addition, we establish the propagation law for the optical force in terms of the coherence function of light at a diffraction plane. This permits us to evaluate the effect of the degree of coherence on the force components by using the archetypical configuration of Young's two-aperture diffraction pattern, so often employed to characterize coherence of waves.

13.
Light Sci Appl ; 11(1): 297, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224170

ABSTRACT

We uncover the existence of a universal phenomenon concerning the electromagnetic optical force exerted by light or other electromagnetic waves on a distribution of charges and currents in general, and of particles in particular. This conveys the appearence of underlying reactive quantities that hinder radiation pressure and currently observed time-averaged forces. This constitutes a novel paradigm of the mechanical efficiency of light on matter, and completes the landscape of the optical, and generally electromagnetic, force in photonics and classical electrodynamics; widening our understanding in the design of both illumination and particles in optical manipulation without the need of increasing the illuminating power, and thus lowering dissipation and heating. We show that this may be accomplished through the minimization of what we establish as the reactive strength of orbital (or canonical) momentum, which plays against the optical force a role analogous to that of the reactive power versus the radiation efficiency of an antenna. This long time overlooked quantity, important for current progress of optical manipulation, and that stems from the complex Maxwell theorem of conservation of complex momentum that we put forward, as well as its alternating flow associated to the imaginary part of the complex Maxwell stress tensor, conform the imaginary Lorentz force that we introduce in this work, and that like the reactive strength of orbital momentum, is antagonistic to the well-known time-averaged force; thus making this reactive Lorentz force indirectly observable near wavelengths at which the time-averaged force is lowered. The Minkowski and Abraham momenta are also addressed.

14.
Opt Lett ; 36(17): 3410-2, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21886227

ABSTRACT

We show that an increase of the coherence length of a statistically homogeneous planar source diminishes the contribution of surface waves to the spatial coherence of the near field, as well as producing changes in the enhancement of the near-field spectrum.

15.
Sci Rep ; 8(1): 9416, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29925847

ABSTRACT

We derive expressions for the scattering, extinction and conversion of the chirality of monochromatic light scattered by bodies which are characterized by a T-matrix. In analogy to the conditions obtained from the conservation of energy, these quantities enable the classification of arbitrary scattering objects due to their full, i.e. either chiral or achiral, electromagnetic response. To this end, we put forward and determine the concepts of duality and breaking of duality symmetry, anti-duality, helicity variation, helicity annhiliation and the breaking of helicity annihilation. Different classes, such as chiral and dual scatterers, are illustrated in this analysis with model examples of spherical and non-spherical shape. As for spheres, these concepts are analysed by considering non-Rayleigh dipolar dielectric particles of high refractive index, which, having a strong magnetic response to the incident wavefield, offer an excellent laboratory to test and interpret such changes in the chirality of the illumination. In addition, comparisons with existing experimental data are made.

16.
Philos Trans A Math Phys Eng Sci ; 375(2090)2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28220006

ABSTRACT

We establish a general unified formulation which, using the optical theorem of electromagnetic helicity, shows that dichorism is a phenomenon arising in any scattering-or diffraction-process, elastic or not, of chiral electromagnetic fields by objects either chiral or achiral. It is shown how this approach paves the way to overcoming well-known limitations of standard circular dichroism, like its weak signal or the difficulties of using it with magnetodielectric particles. Based on the angular spectrum, representation of optical fields with only right circular or left circular plane waves, we introduce beams with transverse elliptic polarization and possessing a longitudinal component. Then, our formulation for general optical fields shows how to enhance the extinction rate of incident helicity (and therefore the dichroism signal) versus that of energy of the light scattered or emitted by a particle, or vice versa.This article is part of the themed issue 'New horizons for nanophotonics'.

17.
Light Sci Appl ; 6(9): e17039, 2017 Sep.
Article in English | MEDLINE | ID: mdl-30167291

ABSTRACT

Since the invention of optical tweezers, optical manipulation has advanced significantly in scientific areas such as atomic physics, optics and biological science. Especially in the past decade, numerous optical beams and nanoscale devices have been proposed to mechanically act on nanoparticles in increasingly precise, stable and flexible ways. Both the linear and angular momenta of light can be exploited to produce optical tractor beams, tweezers and optical torque from the microscale to the nanoscale. Research on optical forces helps to reveal the nature of light-matter interactions and to resolve the fundamental aspects, which require an appropriate description of momenta and the forces on objects in matter. In this review, starting from basic theories and computational approaches, we highlight the latest optical trapping configurations and their applications in bioscience, as well as recent advances down to the nanoscale. Finally, we discuss the future prospects of nanomanipulation, which has considerable potential applications in a variety of scientific fields and everyday life.

18.
Opt Lett ; 32(9): 1156-8, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17410267

ABSTRACT

We investigate numerically the optical forces between noble metal nanoparticles sustaining localized surface plasmon resonances. Our results first point out enhanced binding optical forces compared with dielectric nanoparticles and nonresonant metallic nanoparticles. We also show that under suitable illumination conditions, short-range forces tend to make the nanoparticles cluster, leading to intense and localized hot spots in the interstices. This effect corroborates recent experimental observations of an enhanced Raman signal in trapped metal sphere ensembles.

19.
Opt Lett ; 31(13): 2054-6, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16770430

ABSTRACT

We numerically investigate the optical forces exerted by an incident light beam on Rayleigh metallic particles over a dielectric substrate. In analogy with atom manipulation, we identify two different trapping regimes depending on whether the illumination is performed within the plasmon band or out of it. By adjusting the incident wavelength, the particles can be selectively guided, or immobilized, at the substrate interface.


Subject(s)
Light , Micromanipulation/methods , Nanostructures/chemistry , Nanostructures/radiation effects , Surface Plasmon Resonance/methods , Dose-Response Relationship, Radiation , Nanostructures/ultrastructure , Particle Size , Radiation Dosage , Stress, Mechanical
20.
Appl Opt ; 45(21): 5185-90, 2006 Jul 20.
Article in English | MEDLINE | ID: mdl-16826257

ABSTRACT

We study the local-field enhancement in a nanocavity created by optical nanomanipulation. Recently we showed that a metallic probe can modify the optical force experienced by a metallic particle and generate a material selective trapping potential. We show that the same configuration used for optical forces can be used to control both in magnitude and tune the local-field enhancement around the particle at resonance. The spatial resolution and material selectivity of this technique, allied to its capability to manipulate particles at the nanometric level, may offer a new and versatile way to achieve surface-enhanced Raman scattering spectroscopy at the single-molecule level.

SELECTION OF CITATIONS
SEARCH DETAIL