Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Hum Genet ; 108(5): 840-856, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33861953

ABSTRACT

JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families. Whole-exome sequencing identified rare homozygous or compound heterozygous JAG2 variants in all 13 families. The identified bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Transcriptome analysis of muscle tissue from two participants suggested misregulation of genes involved in myogenesis, including PAX7. In complementary studies, Jag2 downregulation in murine myoblasts led to downregulation of multiple components of the Notch pathway, including Megf10. Investigations in Drosophila suggested an interaction between Serrate and Drpr, the fly orthologs of JAG1/JAG2 and MEGF10, respectively. In silico analysis predicted that many Jagged2 missense variants are associated with structural changes and protein misfolding. In summary, we describe a muscular dystrophy associated with pathogenic variants in JAG2 and evidence suggests a disease mechanism related to Notch pathway dysfunction.


Subject(s)
Jagged-2 Protein/genetics , Muscular Dystrophies/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Cell Line , Child , Child, Preschool , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Glucosyltransferases/genetics , Haplotypes/genetics , Humans , Jagged-1 Protein/genetics , Jagged-2 Protein/chemistry , Jagged-2 Protein/deficiency , Jagged-2 Protein/metabolism , Male , Membrane Proteins/genetics , Mice , Middle Aged , Models, Molecular , Muscles/metabolism , Muscles/pathology , Muscular Dystrophies/pathology , Myoblasts/metabolism , Myoblasts/pathology , Pedigree , Phenotype , Receptors, Notch/metabolism , Signal Transduction , Exome Sequencing , Young Adult
3.
Materials (Basel) ; 15(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35329677

ABSTRACT

Nanoparticles with SiO2 coating were synthesized to have a cubic iron core. These were found to have saturation magnetization very close to the highest possible value of any iron-containing nanoparticles and the bulk iron saturation magnetization. The in vitro toxicology studies show that they are highly biocompatible and possess better MRI contrast agent potential than iron oxide NPs.

4.
J Control Release ; 260: 142-153, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28603028

ABSTRACT

Gastrointestinal and gynecological malignancies disseminate in the peritoneal cavity - a condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to improve therapeutic index of anticancer drugs used for PC treatment. Activity of IP anticancer drugs can be further potentiated by encapsulation in nanocarriers and/or affinity targeting with tumor-specific affinity ligands, such as tumor homing peptides. Here we evaluated a novel tumor penetrating peptide, linTT1 (AKRGARSTA), as a PC targeting ligand for nanoparticles. We first demonstrated that the primary homing receptor for linTT1, p32 (or gC1qR), is expressed on the cell surface of peritoneal carcinoma cell lines of gastric (MKN-45P), ovarian (SKOV-3), and colon (CT-26) origin, and that peritoneal tumors in mice and clinical peritoneal carcinoma explants express p32 protein accessible from the IP space. Iron oxide nanoworms (NWs) functionalized with the linTT1 peptide were taken up and routed to mitochondria in cultured PC cells. NWs functionalized with linTT1 peptide in tandem with a pro-apoptotic [D(KLAKLAK)2] peptide showed p32-dependent cytotoxicity in MKN-45P, SKOV-3, and CT-26 cells. Upon IP administration in mice bearing MKN-45P, SKOV-3, and CT-26 tumors, linTT1-functionalized NWs showed robust homing and penetration into malignant lesions, whereas only a background accumulation was seen in control tissues. In tumors, the linTT1-NW accumulation was seen predominantly in CD31-positive blood vessels, in LYVE-1-positive lymphatic structures, and in CD11b-positive tumor macrophages. Experimental therapy of mice bearing peritoneal MKN-45P xenografts and CT-26 syngeneic tumors with IP linTT1-D(KLAKLAK)2-NWs resulted in significant reduction of weight of peritoneal tumors and significant decrease in the number of metastatic tumor nodules, whereas treatment with untargeted D(KLAKLAK)2-NWs had no effect. Our data show that targeting of p32 with linTT1 tumor-penetrating peptide improves tumor selectivity and antitumor efficacy of IP pro-apoptotic NWs. P32-directed intraperitoneal targeting of other anticancer agents and nanoparticles using peptides and other affinity ligands may represent a general strategy to increase their therapeutic index.


Subject(s)
Carrier Proteins/metabolism , Drug Delivery Systems , Mitochondrial Proteins/metabolism , Nanostructures/administration & dosage , Peptides/administration & dosage , Peritoneal Neoplasms/metabolism , Animals , Apoptosis , Cell Line, Tumor , Humans , Mice, Inbred BALB C , Mice, Nude , Nanostructures/therapeutic use , Peptides/therapeutic use , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/pathology , Tumor Burden/drug effects
5.
Sci Rep ; 7(1): 10220, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860598

ABSTRACT

Wolfram syndrome (WS) is a rare autosomal-recessive disorder that is caused by mutations in the WFS1 gene and is characterized by juvenile-onset diabetes, optic atrophy, hearing loss and a number of other complications. Here, we describe the creation and phenotype of Wfs1 mutant rats, in which exon 5 of the Wfs1 gene is deleted, resulting in a loss of 27 amino acids from the WFS1 protein sequence. These Wfs1-ex5-KO232 rats show progressive glucose intolerance, which culminates in the development of diabetes mellitus, glycosuria, hyperglycaemia and severe body weight loss by 12 months of age. Beta cell mass is reduced in older mutant rats, which is accompanied by decreased glucose-stimulated insulin secretion from 3 months of age. Medullary volume is decreased in older Wfs1-ex5-KO232 rats, with the largest decreases at the level of the inferior olive. Finally, older Wfs1-ex5-KO232 rats show retinal gliosis and optic nerve atrophy at 15 months of age. Electron microscopy revealed axonal degeneration and disorganization of the myelin in the optic nerves of older Wfs1-ex5-KO232 rats. The phenotype of Wfs1-ex5-KO232 rats indicates that they have the core symptoms of WS. Therefore, we present a novel rat model of WS.


Subject(s)
Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Sequence Deletion , Wolfram Syndrome/genetics , Animals , Disease Models, Animal , Exons , Female , Gliosis/genetics , Gliosis/metabolism , Glucose Intolerance , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Male , Optic Atrophy/genetics , Optic Atrophy/metabolism , Phenotype , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Weight Loss , Wolfram Syndrome/metabolism
6.
Brain Behav ; 6(11): e00539, 2016 11.
Article in English | MEDLINE | ID: mdl-27843694

ABSTRACT

BACKGROUND: A permanent Parkinsonian syndrome occurs in intravenous abusers of the designer psychostimulant methcathinone (ephedrone). It is attributed to deposition of contaminant manganese, as reflected by characteristic globus pallidus hyperintensity on T1-weighted MRI. METHODS: We have investigated brain structure and function in methcathinone abusers (n = 12) compared to matched control subjects (n = 12) using T1-weighted structural and resting-state functional MRI. RESULTS: Segmentation analysis revealed significant (p < .05) subcortical grey matter atrophy in methcathinone abusers within putamen and thalamus bilaterally, and the left caudate nucleus. The volume of the caudate nuclei correlated inversely with duration of methcathinone abuse. Voxel-based morphometry showed patients to have significant grey matter loss (p < .05) bilaterally in the putamina and caudate nucleus. Surface-based analysis demonstrated nine clusters of cerebral cortical thinning in methcathinone abusers, with relative sparing of prefrontal, parieto-occipital, and temporal regions. Resting-state functional MRI analysis showed increased functional connectivity within the motor network of patients (p < .05), particularly within the right primary motor cortex. CONCLUSION: Taken together, these results suggest that the manganese exposure associated with prolonged methcathinone abuse results in widespread structural and functional changes affecting both subcortical and cortical grey matter and their connections. Underlying the distinctive movement disorder caused by methcathinone abuse, there is a more widespread pattern of brain involvement than is evident from the hyperintensity restricted to the basal ganglia as shown by T1-weighted structural MRI.


Subject(s)
Brain/drug effects , Gray Matter/drug effects , Parkinsonian Disorders/chemically induced , Propiophenones/adverse effects , Adult , Atrophy/chemically induced , Brain/pathology , Brain/physiopathology , Case-Control Studies , Female , Gray Matter/pathology , Gray Matter/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Manganese Poisoning/blood , Manganese Poisoning/etiology , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology , Substance-Related Disorders/pathology , Substance-Related Disorders/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL