Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894873

ABSTRACT

Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.


Subject(s)
Cardiovascular Diseases , Fetal Development , Pregnancy , Humans , Animals , Male , Female , Fetus/metabolism , Fetal Growth Retardation/metabolism , Primates , Nutrients , Cardiovascular Diseases/metabolism
2.
J Med Primatol ; 51(6): 329-344, 2022 12.
Article in English | MEDLINE | ID: mdl-35855511

ABSTRACT

BACKGROUND: Poor nutrition during fetal development programs postnatal kidney function. Understanding postnatal consequences in nonhuman primates (NHP) is important for translation to our understanding the impact on human kidney function and disease risk. We hypothesized that intrauterine growth restriction (IUGR) in NHP persists postnatally, with potential molecular mechanisms revealed by Western-type diet challenge. METHODS: IUGR juvenile baboons were fed a 7-week Western diet, with kidney biopsies, blood, and urine collected before and after challenge. Transcriptomics and metabolomics were used to analyze biosamples. RESULTS: Pre-challenge IUGR kidney transcriptome and urine metabolome differed from controls. Post-challenge, sex and diet-specific responses in urine metabolite and renal signaling pathways were observed. Dysregulated mTOR signaling persisted postnatally in female pre-challenge. Post-challenge IUGR male response showed uncoordinated signaling suggesting proximal tubule injury. CONCLUSION: Fetal undernutrition impacts juvenile offspring kidneys at the molecular level suggesting early-onset blood pressure dysregulation.


Subject(s)
Fetal Growth Retardation , Kidney , Humans , Animals , Female , Male , Fetal Growth Retardation/etiology , Fetal Growth Retardation/veterinary , Kidney/pathology , Papio , Blood Pressure
3.
Clin Sci (Lond) ; 135(9): 1103-1126, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33899910

ABSTRACT

Poor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity. To enable human translation, we developed a primate baboon model (Papio spp.) of moderate MNR in which mothers receive 70% of control nutrition during pregnancy, resulting in intrauterine growth restriction (IUGR) offspring and later exhibiting myocardial remodeling and heart failure at human equivalent ∼25 years. Term control and MNR baboon offspring were necropsied following cesarean-section, and left ventricle (LV) samples were collected. MNR adversely impacted fetal cardiac LV mitochondria in a sex-dependent fashion. Increased maternal plasma aspartate aminotransferase, creatine phosphokinase (CPK), and elevated cortisol levels in MNR concomitant with decreased blood insulin in male fetal MNR were measured. MNR resulted in a two-fold increase in fetal LV mitochondrial DNA (mtDNA). MNR resulted in increased transcripts for several respiratory chain (NDUFB8, UQCRC1, and cytochrome c) and adenosine triphosphate (ATP) synthase proteins. However, MNR fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, possibly contributing to the 73% decreased ATP content and increased lipid peroxidation. MNR fetal LV showed mitochondria with sparse and disarranged cristae dysmorphology. Conclusion: MNR disruption of fetal cardiac mitochondrial fitness likely contributes to the documented developmental programming of adult cardiac dysfunction, indicating a programmed mitochondrial inability to deliver sufficient energy to cardiac tissues as a chronic mechanism for later-life heart failure.


Subject(s)
Fetal Nutrition Disorders/metabolism , Maternal Nutritional Physiological Phenomena , Mitochondria, Heart/metabolism , Adenine Nucleotides/metabolism , Animals , Female , Fetal Nutrition Disorders/pathology , Mitochondria, Heart/ultrastructure , Oxidative Stress , Papio , Pregnancy
4.
J Med Primatol ; 2018 May 11.
Article in English | MEDLINE | ID: mdl-29749628

ABSTRACT

BACKGROUND: We hypothesized that maternal nutrient restriction (NR) would increase activity and behavioral indicators of anxiety (self-directed behaviors, SDBs) in captive baboons (Papio sp.) and result in more protective maternal styles. METHODS: Our study included 19 adult female baboons. Seven females ate ad libitum (control group), and eight females ate 30% less (NR group) and were observed through pregnancy and lactation. RESULTS: Control females engage in higher rates of SDB than NR females overall (P ≤ .018) and during the prenatal period (P ≤ .001) and engage in more aggressive behavior (P ≤ .033). Control females retrieved infants more than NR females during weeks 5-8 postpartum (P ≤ .019). CONCLUSIONS: Lower SDB rates among prenatal NR females reduce energy expenditure and increase available resources for fetal development when nutritionally restricted. Higher infant retrieval rates by controls may indicate more infant independence rather than maternal style differences.

5.
J Med Primatol ; 47(3): 157-171, 2018 06.
Article in English | MEDLINE | ID: mdl-29603257

ABSTRACT

BACKGROUND: Little is known about the repertoire of non-human primate kidney genes expressed throughout development. The present work establishes an understanding of the primate renal transcriptome during fetal development in the context of renal maturation. METHODS: The baboon kidney transcriptome was characterized at 60-day gestation (DG), 90 DG, 125 DG, 140 DG, 160 DG and adulthood (6-12 years) using gene arrays and validated by QRT-PCR. Pathway and cluster analyses were used to characterize gene expression in the context of biological pathways. RESULTS: Pathway analysis indicated activation of pathways not previously reported as relevant to kidney development. Cluster analysis also revealed gene splice variants with discordant expression profiles during development. CONCLUSIONS: This study provides the first detailed genetic analysis of the developing primate kidney, and our findings of discordant expression of gene splice variants suggest that gene arrays likely provide a simplified view and demonstrate the need to study the fetal renal proteome.


Subject(s)
Fetal Development/genetics , Kidney/growth & development , Papio hamadryas/genetics , Transcriptome , Animals , Kidney/embryology , Papio hamadryas/embryology , Papio hamadryas/growth & development , RNA, Messenger/genetics
6.
Am J Physiol Renal Physiol ; 308(11): F1217-28, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25761880

ABSTRACT

Early life malnutrition results in structural alterations in the kidney, predisposing offspring to later life renal dysfunction. Kidneys of adults who were growth restricted at birth have substantial variations in nephron endowment. Animal models have indicated renal structural and functional consequences in offspring exposed to suboptimal intrauterine nutrition. Mitochondrial bioenergetics play a key role in renal energy metabolism, growth, and function. We hypothesized that moderate maternal nutrient reduction (MNR) would adversely impact fetal renal mitochondrial expression in a well-established nonhuman primate model that produces intrauterine growth reduction at term. Female baboons were fed normal chow diet or 70% of control diet (MNR). Fetal kidneys were harvested at cesarean section at 0.9 gestation (165 days gestation). Human Mitochondrial Energy Metabolism and Human Mitochondria Pathway PCR Arrays were used to analyze mitochondrially relevant mRNA expression. In situ protein content was detected by immunohistochemistry. Despite the smaller overall size, the fetal kidney weight-to-body weight ratio was not affected. We demonstrated fetal sex-specific differential mRNA expression encoding mitochondrial metabolite transport and dynamics proteins. MNR-related differential gene expression was more evident in female fetuses, with 16 transcripts significantly altered, including 14 downregulated and 2 upregulated transcripts. MNR impacted 10 transcripts in male fetuses, with 7 downregulated and 3 upregulated transcripts. The alteration in mRNA levels was accompanied by a decrease in mitochondrial protein cytochrome c oxidase subunit VIc. In conclusion, transcripts encoding fetal renal mitochondrial energy metabolism proteins are nutrition sensitive in a sex-dependent manner. We speculate that these differences lead to decreased mitochondrial fitness that contributes to renal dysfunction in later life.


Subject(s)
Gene Expression Regulation, Developmental , Genes, Mitochondrial/genetics , Gestational Age , Kidney/metabolism , Mitochondria/metabolism , Animals , Female , Maternal Nutritional Physiological Phenomena/physiology , Models, Animal , Papio/embryology , Pregnancy , RNA, Messenger/metabolism , RNA, Mitochondrial
7.
FASEB J ; 28(3): 1294-305, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24334703

ABSTRACT

The mechanisms by which maternal nutrient restriction (MNR) causes reduced fetal growth are poorly understood. We hypothesized that MNR inhibits placental mechanistic target of rapamycin (mTOR) and insulin/IGF-I signaling, down-regulates placental nutrient transporters, and decreases fetal amino acid levels. Pregnant baboons were fed control (ad libitum, n=11) or an MNR diet (70% of controls, n=11) from gestational day (GD) 30. Placenta and umbilical blood were collected at GD 165. Western blot was used to determine the phosphorylation of proteins in the mTOR, insulin/IGF-I, ERK1/2, and GSK-3 signaling pathways in placental homogenates and expression of glucose transporter 1 (GLUT-1), taurine transporter (TAUT), sodium-dependent neutral amino acid transporter (SNAT), and large neutral amino acid transporter (LAT) isoforms in syncytiotrophoblast microvillous membranes (MVMs). MNR reduced fetal weights by 13%, lowered fetal plasma concentrations of essential amino acids, and decreased the phosphorylation of placental S6K, S6 ribosomal protein, 4E-BP1, IRS-1, Akt, ERK-1/2, and GSK-3. MVM protein expression of GLUT-1, TAUT, SNAT-2 and LAT-1/2 was reduced in MNR. This is the first study in primates exploring placental responses to maternal undernutrition. Inhibition of placental mTOR and insulin/IGF-I signaling resulting in down-regulation of placental nutrient transporters may link maternal undernutrition to restricted fetal growth.


Subject(s)
Down-Regulation , Insulin-Like Growth Factor I/physiology , Insulin/physiology , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology , Animals , Female , Papio
8.
Am J Obstet Gynecol ; 213(5): 684.e1-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26212181

ABSTRACT

OBJECTIVE: We sought to evaluate whether in addition to cortisol, catecholamines also transfer psychosocial stress indirectly to the fetus by decreasing uterine blood flow (UBF) and increasing fetal anaerobic metabolism and stress hormones. STUDY DESIGN: Seven pregnant sheep chronically instrumented with uterine ultrasound flow probes and catheters at 0.77 gestation underwent 2 hours of psychosocial stress by isolation. We used adrenergic blockade with labetalol to examine whether decreased UBF is catecholamine mediated and to determine to what extent stress transfer from mother to fetus is catecholamine dependent. RESULTS: Stress induced transient increases in maternal cortisol and norepinephrine (NE). Maximum fetal plasma cortisol concentrations were 8.1 ± 2.1% of those in the mother suggesting its maternal origin. In parallel to the maternal NE increase, UBF decreased by maximum 22% for 30 minutes (P < .05). Fetal NE remained elevated for >2 hours accompanied by a prolonged blood pressure increase (P < .05). Fetuses developed a delayed and prolonged shift toward anaerobic metabolism in the presence of an unaltered oxygen supply. Adrenergic blockade prevented the stress-induced UBF decrease and, consequently, the fetal NE and blood pressure increase and the shift toward anaerobic metabolism. CONCLUSION: We conclude that catecholamine-induced decrease of UBF is a mechanism of maternal-fetal stress transfer. It may explain the influence of maternal stress on fetal development and on programming of adverse health outcomes in later life especially during early pregnancy when fetal glucocorticoid receptor expression is limited.


Subject(s)
Maternal-Fetal Exchange/physiology , Mothers/psychology , Stress, Psychological/physiopathology , Uterus/physiology , Animals , Female , Fetal Development/physiology , Lactates/analysis , Pregnancy , Regional Blood Flow , Sheep
9.
Physiol Genomics ; 45(19): 889-900, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23922128

ABSTRACT

Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD.


Subject(s)
Fetus/metabolism , Heart/embryology , MicroRNAs/genetics , Mothers , Myocardium/metabolism , Obesity/metabolism , Animals , Cell Proliferation , Cluster Analysis , Diet, High-Fat , Female , Fetus/pathology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , MicroRNAs/metabolism , Myocardium/pathology , Papio , Phenotype , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
10.
Br J Nutr ; 109(8): 1382-8, 2013 Apr 28.
Article in English | MEDLINE | ID: mdl-23046718

ABSTRACT

Mechanisms linking maternal nutrient restriction (MNR) to intra-uterine growth restriction (IUGR) and programming of adult disease remain to be established. The impact of controlled MNR on maternal and fetal amino acid metabolism has not been studied in non-human primates. We hypothesised that MNR in pregnant baboons decreases fetal amino acid availability by mid-gestation. We determined maternal and fetal circulating amino acid concentrations at 90 d gestation (90dG, term 184dG) in control baboons fed ad libitum (C, n 8) or 70% of C (MNR, n 6). Before pregnancy, C and MNR body weights and circulating amino acids were similar. At 90dG, MNR mothers had lower body weight than C mothers (P< 0·05). Fetal and placental weights were similar between the groups. MNR reduced maternal blood urea N (BUN), fetal BUN and fetal BUN:creatinine. Except for histidine and lysine in the C and MNR groups and glutamine in the MNR group, circulating concentrations of all amino acids were lower at 90dG compared with pre-pregnancy. Maternal circulating amino acids at 90dG were similar in the MNR and C groups. In contrast, MNR fetal ß-alanine, glycine and taurine all increased. In conclusion, maternal circulating amino acids were maintained at normal levels and fetal amino acid availability was not impaired in response to 30% global MNR in pregnant baboons. However, MNR weight gain was reduced, suggesting adaptation in maternal-fetal resource allocation in an attempt to maintain normal fetal growth. We speculate that these adaptive mechanisms may fail later in gestation when fetal nutrient demands increase rapidly, resulting in IUGR.


Subject(s)
Amino Acids/blood , Caloric Restriction/adverse effects , Fetal Growth Retardation/blood , Fetus/metabolism , Maternal Nutritional Physiological Phenomena , Placentation , Pregnancy, Animal/blood , Analysis of Variance , Animals , Blood Urea Nitrogen , Body Weight/physiology , Female , Fetal Growth Retardation/etiology , Gestational Age , Papio/blood , Papio/embryology , Pregnancy
11.
J Physiol ; 590(12): 2873-84, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22508961

ABSTRACT

The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.


Subject(s)
Fetal Heart/metabolism , Genome , Transcriptome , Animals , Cattle , Female , Fetal Heart/chemistry , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Polymorphism, Single Nucleotide/genetics , Pregnancy , Pregnancy, Multiple , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Untranslated/biosynthesis , RNA, Untranslated/genetics , Sequence Alignment , Sheep, Domestic/genetics
12.
FASEB J ; 24(6): 2066-76, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20110268

ABSTRACT

Maternal obesity in pregnancy predisposes offspring to insulin resistance and associated cardiovascular disease. Here, we used a well-established sheep model to investigate the effects of maternal obesity on cardiac functions. Multiparous ewes were assigned to a control (CON) diet [100% of National Research Council (NRC) recommendations] or an obesogenic (OB) diet (150% of NRC recommendations) from 60 d before conception to necropsy on d 135 of pregnancy. Fetal blood glucose and insulin were increased (P<0.01, n=8) in OB (35.09+/-2.03 mg/dl and 3.40+/-1.43 microU/ml, respectively) vs. CON ewes (23.80+/-1.38 mg/dl and 0.769+/-0.256 microU/ml). Phosphorylation of AMP-activated protein kinase (AMPK), a cardioprotective signaling pathway, was reduced (P<0.05), while the stress signaling pathway, p38 MAPK, was up-regulated (P<0.05) in OB maternal and fetal hearts. Phosphorylation of c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 (IRS-1) at Ser-307 were increased (P<0.05) in OB fetal heart associated with lower downstream PI3K-Akt activity (P<0.05), indicating impaired cardiac insulin signaling. Although OB fetal hearts exhibited a normal contractile function vs. CON fetal hearts during basal perfusion, they developed an impaired heart-rate-left-ventricular-developed pressure product in response to high workload stress. Taken together, fetuses of OB mothers demonstrate alterations in cardiac PI3K-Akt, AMPK, and JNK-IRS-1 signaling pathways that would predispose them to insulin resistance and cardiac dysfunction.


Subject(s)
Fetal Heart/metabolism , Insulin Receptor Substrate Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Obesity/physiopathology , Overnutrition/physiopathology , Signal Transduction , Animals , Female , Fetal Heart/embryology , Immunoblotting , Immunoprecipitation , Insulin/metabolism , Insulin Resistance , MAP Kinase Signaling System , Phenotype , Phosphorylation , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , Sheep
13.
Am J Obstet Gynecol ; 204(6): 545.e1-10, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21411054

ABSTRACT

OBJECTIVE: We investigated effects of 3 weekly courses of fetal betamethasone (ßM) on motivation and cognition in juvenile baboon offspring utilizing the Cambridge Neuropsychological Test Automated Battery. STUDY DESIGN: Pregnant baboons (Papio species) received 2 injections of saline control or 175 µg/kg ßM 24 hours apart at 0.6, 0.65, and 0.7 gestation. Offspring (saline control female, n = 7 and saline control male, n = 6; ßM female [FßM], n = 7 and ßM male [MßM], n = 5) were studied at 2.6-3.2 years with a progressive ratio test for motivation, simple discriminations and reversals for associative learning and rule change plasticity, and an intra/extradimensional set-shifting test for attention allocation. RESULTS: ßM exposure decreased motivation in both sexes. In intra/extradimensional testing, FßM made more errors in the simple discrimination reversal (mean difference of errors [FßM - MßM] = 20.2 ± 9.9; P ≤ .05), compound discrimination (mean difference of errors = 36.3 ± 17.4; P ≤ .05), and compound reversal (mean difference of errors = 58 ± 23.6; P < .05) stages as compared to the MßM offspring. CONCLUSION: This central nervous system developmental programming adds growing concerns of long-term effects of repeated fetal synthetic glucocorticoid exposure. In summary, behavioral effects observed show sex-specific differences in resilience to multiple fetal ßM exposures.


Subject(s)
Attention/drug effects , Betamethasone/adverse effects , Glucocorticoids/adverse effects , Prenatal Exposure Delayed Effects , Reversal Learning/drug effects , Animals , Female , Male , Papio , Pregnancy , Sex Factors
14.
J Physiol ; 588(Pt 8): 1349-59, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20176628

ABSTRACT

Decreased maternal nutrient availability during pregnancy induces compensatory fetal metabolic and endocrine responses. Knowledge of cellular changes involved is critical to understanding normal and abnormal development. Several studies in rodents and sheep report increased fetal plasma cortisol and associated increased gluconeogenesis in response to maternal nutrient reduction (MNR) but observations in primates are lacking. We determined MNR effects on fetal liver phosphoenolpyruvate carboxykinase 1 (protein, PEPCK1; gene, PCK1 orthologous/homologous human chromosomal region 20q13.31) at 0.9 gestation (G). Female baboon social groups were fed ad libitum (control, CTR) or 70% CTR (MNR) from 0.16 to 0.9G when fetuses were delivered by caesarean section under general anaesthesia. Plasma cortisol was elevated in fetuses of MNR mothers (P < 0.05). Immunoreactive PEPCK1 protein was located around the liver lobule central vein and was low in CTR fetuses but rose to 63% of adult levels in MNR fetuses. PCK1 mRNA measured by QRT-PCR increased in MNR (2.3-fold; P < 0.05) while the 25% rise in protein by Western blot analysis was not significant. PCK1 promoter methylation analysis using bisulfite sequencing was significantly reduced in six out of nine CpG-dinucleotides evaluated in MNR compared with CTR liver samples. In conclusion, these are the first data from a fetal non-human primate indicating hypomethylation of the PCK1 promoter in the liver following moderate maternal nutrient reduction.


Subject(s)
Epigenesis, Genetic/physiology , Fetus/metabolism , Liver/embryology , Liver/enzymology , Malnutrition/metabolism , Papio/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Animals , Base Sequence , Epigenesis, Genetic/genetics , Female , Methylation , Models, Animal , Molecular Sequence Data , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Pregnancy , RNA, Messenger/metabolism
15.
Am J Obstet Gynecol ; 202(2): 186.e1-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20022315

ABSTRACT

OBJECTIVE: Glucocorticoid administration to women in preterm labor improves neonatal mortality and morbidity. Fetal exposure to glucocorticoid levels higher than those appropriate to the current gestational stage has multiple organ system effects. Some, eg, fetal hypertension, are maximal at lower than the clinical dose. We hypothesized that the clinical dose has supramaximal lung maturational effects. STUDY DESIGN: We evaluated the full, half, and quarter clinical betamethasone dose (12 mg/70 kg or 170 microg/kg intramuscularly twice 24 hours apart) on fetal sheep lung pressure volume curves (PVC) after 48 hours' exposure at 0.75 gestation. We measured key messenger RNAs and protein products that affect lung function and total lung dipalmitoyl phosphatidyl choline. RESULTS: Full and half doses had similar PVC and total lung dipalmitoyl phosphatidyl choline effects. Messenger RNA for surfactant proteins A, B, and D and elastin increased in a dose-dependent fashion. CONCLUSION: Half the clinical betamethasone dose produces maximal PVC improvement in fetal sheep at 0.75 gestation.


Subject(s)
Betamethasone/pharmacology , Fetal Organ Maturity/drug effects , Lung/embryology , 1,2-Dipalmitoylphosphatidylcholine/analysis , Animals , Dose-Response Relationship, Drug , Female , Fetal Weight/drug effects , Organ Size/drug effects , Pregnancy , Pulmonary Surfactants/analysis , RNA, Messenger/analysis , Sheep
16.
Am J Physiol Regul Integr Comp Physiol ; 297(3): R835-43, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19605766

ABSTRACT

Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.


Subject(s)
Glucagon-Secreting Cells/pathology , Insulin Resistance , Insulin-Secreting Cells/pathology , Maternal Nutritional Physiological Phenomena , Obesity/physiopathology , Pancreas/pathology , Animals , Animals, Newborn , Blood Glucose/metabolism , Cell Proliferation , Disease Models, Animal , Female , Fetal Development , Fetus/pathology , Gestational Age , Glucagon-Secreting Cells/metabolism , Hydrocortisone/blood , Insulin/blood , Insulin-Secreting Cells/metabolism , Mitosis , Obesity/metabolism , Obesity/pathology , Pancreas/embryology , Pancreas/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , Sheep , Up-Regulation
17.
J Nutr Biochem ; 19(6): 409-14, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17869083

ABSTRACT

Intrauterine nutrition status is reported to correlate with risk of cardiovascular diseases in adulthood. Either under- or overnutrition during early to mid gestation contributes to altered fetal growth and ventricular geometry. This study was designed to examine myocardial expression of ciliary neurotrophic factor receptor alpha (CNTFRalpha) and its downstream mediator signal transducer and activator of transcription 3 (STAT3) on maternal undernutrition- or overnutrition-induced changes in fetal heart weight. Multiparous ewes were fed with 50% [nutrient-restricted (NR)], 100% (control) or 150% [overfed (OF)] of National Research Council requirements from 28 to 78 days of gestation (dG; term, 148 dG). Ewes were euthanized on Day 78, and the gravid uteri and fetuses recovered. Ventricular protein expression of CNTFRalpha, STAT3, phosphorylated STAT3, insulin-like growth factor I receptor (IGF-1R), and IGF binding protein 3 (IGFBP3) were quantitated using Western blot. Plasma cortisol levels were higher in both NR and OF fetuses, whereas plasma IGF-1 levels were lower and higher in NR and OF fetuses. Fetal weights were reduced by 29.9% in NR ewes and were increased by 22.2% in fetuses from OF ewes compared to control group. Nutrient restriction did not affect fetal heart or ventricular weights, whereas overfeeding increased heart and ventricular weights. Protein expression of CNTFRalpha in fetal ventricular tissue was reduced in OF group, whereas STAT3 and phosphorylated STAT3 levels were reduced in both NR and OF groups. Expression of IGF-1R and IGFBP3 was unaffected in either NR or OF group. These data suggested that, compared with maternal undernutrition, intrauterine overfeeding during early to mid gestation is associated with increases in fetal blood concentrations of cortisol and IGF-1, in association with ventricular hypertrophy where reduced expression of CNTFRalpha and STAT3 may play a role.


Subject(s)
Animal Nutritional Physiological Phenomena , Ciliary Neurotrophic Factor Receptor alpha Subunit/biosynthesis , Heart Ventricles/embryology , Malnutrition/physiopathology , Receptors, Nerve Growth Factor/physiology , STAT3 Transcription Factor/physiology , Animals , Female , Fetus , Heart Ventricles/metabolism , Insulin-Like Growth Factor Binding Proteins/biosynthesis , Phosphorylation , Pregnancy , Pregnancy, Animal , Receptor, IGF Type 1/physiology , Sheep
18.
Reprod Biol Endocrinol ; 3: 27, 2005 Jul 14.
Article in English | MEDLINE | ID: mdl-16018810

ABSTRACT

BACKGROUND: Adequate maternal nutrition during gestation is requisite for fetal nutrition and development. While a large group of epidemiological studies indicate poor fetal nutrition increases heart disease risk and mortality in later life, little work has focused on the effects of impaired maternal nutrition on fetal heart development. We have previously shown that 50% global nutrient restriction from 28-78 days of gestation (early to mid-pregnancy; term = 147 days) in sheep at mid-gestation retards fetal growth while protecting growth of heart and results in hypertensive male offspring at nine months of age. In the present study, we evaluate LV gene transcription using RNA protection assay and real-time reverse transcriptase polymerase chain reaction, and protein expression using western blot, of VEGF and AT1 and AT2 receptors for AngII at mid-gestation in fetuses from pregnant ewes fed either 100% (C) or 50% (NR) diet during early to mid-gestation. RESULTS: No difference between the NR (n = 6) and C (n = 6) groups was found in gene transcription of the AngII receptors. Immunoreactive AT1 (1918.4 +/- 154.2 vs. 3881.2 +/- 494.9; P < 0.01) and AT2 (1729.9 +/- 293.6 vs. 3043.3 +/- 373.2; P < 0.02) was decreased in the LV of NR fetuses compared to C fetuses. The LV of fetuses exposed to NR had greater transcription of mRNA for VEGF (5.42 +/- 0.85 vs. 3.05 +/- 0.19; P < 0.03) than respective C LV, while no change was observed in immunoreactive VEGF. CONCLUSION: The present study demonstrates that VEGF, AT1 and AT2 message and protein are not tightly coupled, pointing to post-transcriptional control points in the mid gestation NR fetus. The present data also suggest that the role of VEGF and the renin-angiotensin system receptors during conditions inducing protected cardiac growth is distinct from the role these proteins may play in normal fetal cardiac growth. The present findings may help explain epidemiological studies that indicate fetuses with low birth weight carry an increased risk of mortality from coronary and cardiovascular disease, particularly if these individuals have reduced cardiovascular reserve due to an epigenetic decrease in vascularization.


Subject(s)
Heart Ventricles/embryology , Heart Ventricles/metabolism , Malnutrition/veterinary , Maternal Nutritional Physiological Phenomena , Receptors, Angiotensin/biosynthesis , Sheep/physiology , Animal Nutritional Physiological Phenomena , Animals , Female , Fetal Development , Hypertrophy, Left Ventricular/metabolism , Malnutrition/metabolism , Pregnancy , Receptor, Angiotensin, Type 1/biosynthesis , Receptor, Angiotensin, Type 2/biosynthesis , Sheep/embryology , Vascular Endothelial Growth Factor A/biosynthesis
19.
Growth Horm IGF Res ; 15(4): 291-9, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16046163

ABSTRACT

Intrauterine undernutrition is associated with a high incidence of cardiovascular diseases in adulthood. We previously showed that maternal nutrient restriction during early to mid gestation produces ventricular enlargement, although the mechanism is unknown. We examined myocardial expression of insulin-like growth factor I (IGF-1), IGF-2, IGF binding protein 3 (IGFBP-3), IGF-receptor 1 (IGF-1R) and IGF-2R in fetal sheep with maternal undernutrition. Multiparous ewes were fed with 50% (nutrient-restricted, NR) or 100% (control-fed, C) of NRC requirements from day 28 to 78 of gestation. Some of NR and C ewes were euthanized on day 78, and the rest were fed 100% NRC requirements from day 79 to 135 of gestation. At necropsy on day 78 or day 135 of gestation, gravid uteri were recovered. mRNA expression of IGF-1 and IGF-2 in ventricles were measured with RT-PCR, and protein expression of IGF-1R, IGF-2R, IGFBP-3 was quantitated with Western blot. Crown-rump length was reduced and left ventricle was enlarged in NR fetuses on day 78. At day 135 after re-alimentation, ventricular weights were similar between the two groups although ventricular wall thicknesses were greater in NR than C fetuses. No difference was found in IGF-1, IGF-2 or IGFBP-3 levels between the NR and C groups at either gestational age. Protein expression of IGF-1R and IGF-2R in the left ventricle and IGF-1R in the right ventricle was significantly elevated in the NR group on day 78 of gestation. Only IGF-1R expression remained elevated after late gestational re-alimentation in association with increases in ventricular wall thickness. Our study suggest that maternal undernutrition from early to mid gestation may change the expression of IGF-1R and IGF-2R in fetal myocardium, and play a role in cardiac ventricular enlargement in fetal sheep.


Subject(s)
Animal Nutritional Physiological Phenomena , Heart Ventricles/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 2/metabolism , Sheep/metabolism , Animals , Female , Fetus/chemistry , Gestational Age , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor II/genetics , Pregnancy , Pregnancy, Animal , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction
20.
Epigenetics ; 10(4): 259-73, 2015.
Article in English | MEDLINE | ID: mdl-25774863

ABSTRACT

Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations.


Subject(s)
Chromatin Assembly and Disassembly , Developmental Disabilities/etiology , Environmental Exposure , Xenobiotics/adverse effects , Diet , Environmental Exposure/adverse effects , Epigenesis, Genetic , Genotype , Humans , Phenotype , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL