ABSTRACT
Diffusion is one of the key nature processes which plays an important role in respiration, digestion, and nutrient transport in cells. In this regard, the present article aims to review various diffusion approaches used to fabricate different functional materials based on hydrogels, unique examples of materials that control diffusion. They have found applications in fields such as drug encapsulation and delivery, nutrient delivery in agriculture, developing materials for regenerative medicine, and creating stimuli-responsive materials in soft robotics and microrobotics. In addition, mechanisms of release and drug diffusion kinetics as key tools for material design are discussed.
Subject(s)
Robotics , Stimuli Responsive Polymers , Hydrogels , Drug Delivery Systems , ElectronicsABSTRACT
We suggest a new strategy for creating stimuli-responsive bio-integrated optical nanostructures based on Mie-resonant silicon nanoparticles covered by an ensemble of similarity negatively charged polyelectrolytes (heparin and sodium polystyrene sulfonate). The dynamic tuning of the nanostructures' optical response is due to light-induced heating of the nanoparticles and swelling of the polyelectrolyte shell. The resulting hydrophilic/hydrophobic transitions significantly change the shell thickness and reversible shift of the scattering spectra for individual nanoparticles up to 60â nm. Our findings bring novel opportunities for the application of smart nanomaterials in nanomedicine and bio-integrated nanophotonics.
Subject(s)
Molecular Dynamics Simulation , Nanostructures/chemistry , Polymers/chemistry , Temperature , Particle Size , Silicon/chemistryABSTRACT
The development of stimuli-responsive nanocontainers is an issue of utmost importance for many applications such as targeted drug delivery, regulation of the cell and tissue behavior, making bacteria have useful functions and here converting light. The present work shows a new contribution to the design of polyelectrolyte (PE) containers based on surface modified mesoporous titania particles with deposited Ag nanoparticles to achieve chemical light upconversion via biofilms. The PE shell allows slowing down the kinetics of a release of loaded l-arabinose and switching the bacteria luminescence in a certain time. The hybrid TiO2/Ag/PE containers activated at 980 nm (IR) illumination demonstrate 10 times faster release of l-arabinose as opposed to non-activated containers. Fast IR-released l-arabinose switch bacteria fluorescence which we monitor at 510 nm. The approach described herein can be used in many applications where the target and delayed switching and light upconversion are required.
Subject(s)
Arabinose/administration & dosage , Biofilms , Escherichia coli/physiology , Nanostructures/chemistry , Polyelectrolytes/chemistry , Silver/chemistry , Titanium/chemistry , Arabinose/metabolism , Drug Carriers/chemistry , Fluorescence , Humans , Luminescence , Metal Nanoparticles/chemistryABSTRACT
The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown.
Subject(s)
Cholesterol/analysis , Cholesterol/isolation & purification , Molecular Imprinting/methods , Solid Phase Extraction/methods , Cholesterol/chemistry , Chromatography , Models, Biological , PorosityABSTRACT
Glucocorticoids (GCs) are used to treat numerous diseases, but their use in limited by adverse side effects. One such effect is occasional increased anxiety. Since the intensity of hepatic microsomal oxidation has been shown to alter responses to GC, we examined the possibility that rats with lower rates of hepatic GC metabolism would have increased anxiety. We hypothesized that the resulting, excessive GC would stimulate brain monoamine oxidase A (MAO-A), which would reduce brain serotonin, and thereby increase anxiety. Hepatic microsomal oxidative intensity was evaluated by the hexobarbital sleep time (HST) test. Results showed that rats with lower rates of hepatic GC metabolism had elevated brain MAO-A activity, reduced brain serotonin, and more anxiety than rats with higher rates of hepatic GC metabolism. We suggest that the HST test, as an integrative test of microsomal oxidation status, should be useful for predicting individual sensitivity to GC and to other drugs metabolized by the hepatic microsomal oxidation system.
Subject(s)
Anxiety/metabolism , Cytochrome P-450 Enzyme System/metabolism , Glucocorticoids/pharmacokinetics , Microsomes, Liver/metabolism , Animals , Brain/drug effects , Brain/metabolism , Hexobarbital , Liver/drug effects , Liver/metabolism , Male , Microsomes, Liver/drug effects , Monoamine Oxidase/metabolism , Oxidation-Reduction , Rats , Rats, Sprague-DawleyABSTRACT
The present study is focused on the relationship between monoamine oxidase (MAO) activity and hepatic content of cytochrome P450 (CYP), which reflects the status of microsomal oxidation. For vital integrative evaluation of hepatic microsomal oxidation in rats, the hexobarbital sleep test was used, and content of CYP was measured in hepatic microsomes. Rats with short hexobarbital sleep time (SHST) had higher content of microsomal CYP than rats with long hexobarbital sleep time (LHST). Whole brain MAO-A and MAO-B activities, serotonin and carbonylated protein levels were higher in SHST than in LHST rats. MAO-A and MAO-B activities were higher in brain cortex of SHST rats; MAO-A activity was higher only in hypothalamus and medulla of LHST. The same brain regions of LHST rats had higher concentrations of carbonylated proteins and lipid peroxidation products than in SHST rats. MAO activity was correlated with microsomal oxidation phenotype. Rats with higher hepatic content of CYP had higher activities of MAO-A and MAO-B in the brain and higher plasma serotonin levels than rats with lower microsomal oxidation. In conclusion, data obtained in this study showed a correlation between MAO activity and microsomal oxidation phenotype.
Subject(s)
Behavior, Animal/physiology , Brain/enzymology , Hexobarbital/administration & dosage , Liver/enzymology , Monoamine Oxidase/metabolism , Sleep/physiology , Animals , Behavior, Animal/drug effects , Brain/drug effects , Enzyme Activation/drug effects , Free Radicals/metabolism , Hypnotics and Sedatives/administration & dosage , Liver/drug effects , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley , Sleep/drug effectsABSTRACT
Urate oxidase (UOx) surrounded by synthetic macromolecules, such as polyethyleneimine (PEI), poly(allylamine hydrochloride) (PAH), and poly(sodium 4-styrenesulfonate) (PSS) is a convenient model of redox-active biomacromolecules in a crowded environment and could display high enzymatic activity towards uric acid, an important marker of COVID-19 patients. In this work, the carbon fiber electrode was modified with Prussian blue (PB) redox mediator, UOx layer, and a layer-by-layer assembled polyelectrolyte film, which forms a complex coacervate consisting of a weakly charged polyelectrolyte (PEI or PAH) and a highly charged one (PSS). The film deposition process was controlled by cyclic voltammetry and scanning electron microscopy coupled with energy-dispersive X-ray analysis (at the stage of PB deposition) and through quartz crystal microbalance technique (at latter stages) revealed uniform distribution of the polyelectrolyte layers. Variation of the polyelectrolyte film composition derived the following statements. (1) There is a linear correlation between electrochemical signal and concentration of uric acid in the range of 10-4-10-6 M. (2) An increase in the number of polyelectrolyte layers provides more reproducible values for uric acid concentration in real urine samples of SARS-CoV-2 patients measured by electrochemical enzyme assay, which are comparable to those of spectrophotometric assay. (3) The PAH/UOx/PSS/(PAH/PSS)2-coated carbon fiber electrode displays the highest sensitivity towards uric acid. (4) There is a high enzyme activity of UOx immobilized into the hydrogel nanolayer (values of the Michaelis-Menten constant are up to 2 µM) and, consequently, high affinity to uric acid.
ABSTRACT
New SERS detection platforms are required for the quick and easy preparation of sensing devices for food, agriculture, and environmental science. For quantitative sensing, it is important that a sensing material, in addition to efficient sensing, provides extraction and concentration of the target molecules such as toxic pesticides or healthy vitamins. We design such films adopting the Liesegang rings formation process that includes the reaction-diffusion of silver nitrate and melamine followed by the precipitation of different intermediates and their reduction by light in a pectin medium. Surprisingly, we find that the presence of melamine provides an excellent substrate for the extraction of pollutants at the solid-liquid interface giving rise to a powerful but easy and fast method for the quantification of fruits' quality. The complex silver and melamine containing films show high sensitivity even at relatively low silver concentrations.
Subject(s)
Spectrum Analysis, Raman , TriazinesABSTRACT
In this paper, we describe an electrochemical sensing platform-ElectroSens-for the detection of Zn based on self-assembled polyelectrolyte multilayers on the carbon fiber (CF) electrode surface. The CF-extended surface facilitates the usage of a small volume electrochemical cell (1 mL) without stirring. This approach allows making a low-cost three-electrode platform. Working electrode modification with layer-by-layer assembly of polyethyleneimine (PEI), poly(sodium 4-styrenesulfonate) (PSS), and mercury nitrate layers eliminates solution toxicity and provides stable stripping voltammetry measurements. The stable, robust, sustainable, and even reusable Ag/AgCl reference electrode consists of adsorbed 32 PEI-KCl/PSS-KCl bilayers on the CF/silver paste separated from the outer solution by a polyvinyl chloride membrane. The polyelectrolyte-based sensor interface prevents adsorption of protein molecules from biological liquids on the CF surface that leads to a sensitivity increase of up to 2.2 µA/M for Zn2+ detection and provides a low limit of detection of 4.6 × 10-8 M. The linear range for Zn detection is 1 × 10-7 to 1 × 10-5 M. A portable potentiostat connected via wireless to a smartphone with an android-based software is also provided. The ElectroSens demonstrates reproducibility and repeatability of data for the detection of Zn in blood and urine without the digestion step.