Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Biochem Biophys Res Commun ; 693: 149355, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38096617

ABSTRACT

Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.


Subject(s)
Hematopoietic Stem Cells , Metalloendopeptidases , Hematopoietic Stem Cells/metabolism , Metalloendopeptidases/metabolism , Hematopoiesis/physiology , Up-Regulation , Cell Differentiation/genetics
2.
Biochem Biophys Res Commun ; 712-713: 149961, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38648679

ABSTRACT

Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.


Subject(s)
Blood Pressure , Calcium , Metalloendopeptidases , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Calcium/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Male , Mice, Inbred C57BL , Hypotension/metabolism , Cells, Cultured , Aorta/metabolism , Aorta/cytology , Vasoconstriction/drug effects , Calcium Signaling
3.
Circulation ; 142(10): 983-997, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32597196

ABSTRACT

BACKGROUND: Increased fatty acid oxidation (FAO) has long been considered a culprit in the development of obesity/diabetes mellitus-induced cardiomyopathy. However, enhancing cardiac FAO by removing the inhibitory mechanism of long-chain fatty acid transport into mitochondria via deletion of acetyl coenzyme A carboxylase 2 (ACC2) does not cause cardiomyopathy in nonobese mice, suggesting that high FAO is distinct from cardiac lipotoxicity. We hypothesize that cardiac pathology-associated obesity is attributable to the imbalance of fatty acid supply and oxidation. Thus, we here seek to determine whether further increasing FAO by inducing ACC2 deletion prevents obesity-induced cardiomyopathy, and if so, to elucidate the underlying mechanisms. METHODS: We induced high FAO in adult mouse hearts by cardiac-specific deletion of ACC2 using a tamoxifen-inducible model (ACC2 iKO). Control and ACC2 iKO mice were subjected to high-fat diet (HFD) feeding for 24 weeks to induce obesity. Cardiac function, mitochondria function, and mitophagy activity were examined. RESULTS: Despite both control and ACC2 iKO mice exhibiting a similar obese phenotype, increasing FAO oxidation by deletion of ACC2 prevented HFD-induced cardiac dysfunction, pathological remodeling, and mitochondria dysfunction, as well. Similarly, increasing FAO by knockdown of ACC2 prevented palmitate-induced mitochondria dysfunction and cardiomyocyte death in vitro. Furthermore, HFD suppressed mitophagy activity and caused damaged mitochondria to accumulate in the heart, which was attenuated, in part, in the ACC2 iKO heart. Mechanistically, ACC2 iKO prevented HFD-induced downregulation of parkin. During stimulation for mitophagy, mitochondria-localized parkin was severely reduced in control HFD-fed mouse heart, which was restored, in part, in ACC2 iKO HFD-fed mice. CONCLUSIONS: These data show that increasing cardiac FAO alone does not cause cardiac dysfunction, but protects against cardiomyopathy in chronically obese mice. The beneficial effect of enhancing cardiac FAO in HFD-induced obesity is mediated, in part, by the maintenance of mitochondria function through regulating parkin-mediated mitophagy. Our findings also suggest that targeting the parkin-dependent mitophagy pathway could be an effective strategy against the development of obesity-induced cardiomyopathy.


Subject(s)
Cardiomyopathies/prevention & control , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Mitochondria, Heart/metabolism , Mitophagy/drug effects , Ubiquitin-Protein Ligases/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Mice , Mice, Knockout , Mitochondria, Heart/genetics , Mitophagy/genetics , Oxidation-Reduction/drug effects , Ubiquitin-Protein Ligases/genetics
4.
FASEB J ; 34(9): 11624-11640, 2020 09.
Article in English | MEDLINE | ID: mdl-32683751

ABSTRACT

Cardiac sympathetic innervation is critically involved in the regulation of circulatory dynamics. However, the molecular mechanism for the innervation patterning has remained elusive. Here, we demonstrate that nardilysin (NRDC, Nrdc), an enhancer of ectodomain shedding, regulates cardiac sympathetic innervation. Nardilysin-deficient (Nrdc-/- ) mice show hypoplastic hearts, hypotension, bradycardia, and abnormal sympathetic innervation patterning. While the innervation of left ventricle (LV) of wild-type mice is denser in the subepicardium than in the subendocardium, Nrdc-/- LV lacks such a polarity and is uniformly and more abundantly innervated. At the molecular level, the full-length form of p75 neurotrophin receptor (p75NTR , Ngfr) is increased in Nrdc-/- LV due to the reduced ectodomain shedding of p75NTR . Importantly, the reduction of p75NTR rescued the abnormal innervation phenotype of Nrdc-/- mice. Moreover, sympathetic neuron-specific, but not cardiomyocyte-specific deletion of Nrdc recapitulated the abnormal innervation patterning of Nrdc-/- mice. In conclusion, neuronal nardilysin critically regulates cardiac sympathetic innervation and circulatory dynamics via modulation of p75NTR .


Subject(s)
Heart/innervation , Metalloendopeptidases/genetics , Receptor, Nerve Growth Factor/genetics , Sympathetic Nervous System/metabolism , Animals , Blood Pressure/genetics , Blood Pressure/physiology , Bradycardia/genetics , Bradycardia/physiopathology , Cells, Cultured , Echocardiography , Heart/physiopathology , Heart Rate/genetics , Heart Rate/physiology , Metalloendopeptidases/deficiency , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , PC12 Cells , Rats , Receptor, Nerve Growth Factor/deficiency , Sympathetic Nervous System/cytology , Sympathetic Nervous System/physiopathology
5.
Biol Pharm Bull ; 44(3): 363-371, 2021.
Article in English | MEDLINE | ID: mdl-33642545

ABSTRACT

Nardilysin (NRDC) has been shown to be involved in post-translational histone modifications, in addition to enhancement in ectodomain shedding of membrane-anchored protein, which play significant roles in various pathophysiology, including glucose homeostasis, inflammatory diseases and cancer. The present study sought to determine roles of NRDC in the liver on lipid and lipoprotein metabolism. We established liver-specific NRDC deficient mice by use of NRD1 floxed mice and albumin promoter-Cre recombinase (Cre) transgenic mice, and found that their serum low-density lipoprotein (LDL) cholesterol levels were significantly lower than those in control littermate mice. In the liver, LDL receptor (LDLR) mRNA expression was significantly upregulated, while inducible degrader of LDLR (IDOL) and microsomal triglyceride transfer protein (MTP) mRNA expression was significantly downregulated, in liver-specific NRDC deficient mice. Hepatic cell-surface LDLR expression levels were significantly elevated and serum pro-protein convertase subtilisin-kexin type 9 (PCSK9) levels were significantly reduced in mice with hepatic NRDC deficiency. In cultured hepatocytes, NRDC deficiency significantly reduced secreted PCSK9 and increased cell-surface LDLR expression. On the other hand, NRDC overexpression in cultured hepatocytes significantly increased secreted PCSK9 and lowered cell-surface LDLR expression. Thus, NRDC in murine hepatocytes appears to play key roles in cholesterol homeostasis, although the precise molecular mechanisms remain to be determined.


Subject(s)
Cholesterol, LDL/blood , Hepatocytes/metabolism , Liver/metabolism , Metalloendopeptidases/deficiency , Animals , Cells, Cultured , Male , Metalloendopeptidases/genetics , Mice, Transgenic , Proprotein Convertase 9/blood , Receptors, LDL/genetics , Receptors, LDL/metabolism
6.
Gut ; 68(5): 882-892, 2019 05.
Article in English | MEDLINE | ID: mdl-29798841

ABSTRACT

OBJECTIVE: Nardilysin (NRDC), a zinc peptidase, exhibits multiple localisation-dependent functions including as an enhancer of ectodomain shedding in the extracellular space and a transcriptional coregulator in the nucleus. In this study, we investigated its functional role in exocrine pancreatic development, homeostasis and the formation of pancreatic ductal adenocarcinoma (PDA). DESIGN: We analysed Ptf1a-Cre; Nrdcflox/flox mice to investigate the impact of Nrdc deletion. Pancreatic acinar cells were isolated from Nrdcflox/flox mice and infected with adenovirus expressing Cre recombinase to examine the impact of Nrdc inactivation. Global gene expression in Nrdc-cKO pancreas was analysed compared with wild-type pancreas by microarray analysis. We also analysed Ptf1a-Cre; KrasG12D; Nrdcflox/flox mice to investigate the impact of Nrdc deletion in the context of oncogenic Kras. A total of 51 human samples of pancreatic intraepithelial lesions (PanIN) and PDA were examined by immunohistochemistry for NRDC. RESULTS: We found that pancreatic deletion of Nrdc leads to spontaneous chronic pancreatitis concomitant with acinar-to-ductal conversion, increased apoptosis and atrophic pancreas in mice. Acinar-to-ductal conversion was observed mainly through a non-cell autonomous mechanism, and the expression of several chemokines was significantly increased in Nrdc-null pancreatic acinar cells. Furthermore, pancreatic deletion of Nrdc dramatically accelerated KrasG12D -driven PanIN and subsequent PDA formation in mice. These data demonstrate a previously unappreciated anti-inflammatory and tumour suppressive functions of Nrdc in the pancreas in mice. Finally, absence of NRDC expression was observed in a subset of human PanIN and PDA. CONCLUSION: Nrdc inhibits pancreatitis and suppresses PDA initiation in mice.


Subject(s)
Carcinoma, Pancreatic Ductal/prevention & control , Metalloendopeptidases/physiology , Pancreatic Neoplasms/prevention & control , Pancreatitis/prevention & control , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Mice , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatitis/metabolism , Pancreatitis/pathology
7.
Cancer Sci ; 108(5): 910-917, 2017 May.
Article in English | MEDLINE | ID: mdl-28207963

ABSTRACT

Nardilysin (NRDC) is a metalloendopeptidase of the M16 family. We previously showed that NRDC activates inflammatory cytokine signaling, including interleukin-6-signal transducer and activator of transcription 3 (STAT3) signaling. NRDC has been implicated in the promotion of breast, gastric and esophageal cancer, as well as the development of liver fibrosis. In this study, we investigated the role of NRDC in the promotion of hepatocellular carcinoma (HCC), both clinically and experimentally. We found that NRDC expression was upregulated threefold in HCC tissue compared to the adjacent non-tumor liver tissue, which was confirmed by immunohistochemistry and western blotting. We also found that high serum NRDC was associated with large tumor size (>3 cm, P = 0.016) and poor prognosis after hepatectomy (median survival time 32.0 vs 73.9 months, P = 0.003) in patients with hepatitis C (n = 120). Diethylnitrosamine-induced hepatocarcinogenesis was suppressed in heterozygous NRDC-deficient mice compared to their wild-type littermates. Gene silencing of NRDC with miRNA diminished the growth of Huh-7 and Hep3B spheroids in vitro. Notably, phosphorylation of STAT3 was decreased in NRDC-depleted Huh-7 spheroids compared to control spheroids. The effect of a STAT3 inhibitor (S3I-201) on the growth of Huh-7 spheroids was reduced in NRDC-depleted cells relative to controls. Our results show that NRDC is a promising prognostic marker for HCC in patients with hepatitis C, and that NRDC promotes tumor growth through activation of STAT3.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Metalloendopeptidases/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Phosphorylation/physiology , Prognosis , Up-Regulation/physiology
8.
Exp Anim ; 73(1): 93-100, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37661429

ABSTRACT

Exocyst is an octameric protein complex implicated in exocytosis. The exocyst complex is highly conserved among mammalian species, but the physiological function of each subunit in exocyst remains unclear. Previously, we identified exocyst complex component 3-like (Exoc3l) as a gene abundantly expressed in embryonic endothelial cells and implicated in the process of angiogenesis in human umbilical cord endothelial cells. Here, to reveal the physiological roles of Exoc3l during development, we generated Exoc3l knockout (KO) mice by genome editing with CRISPR/Cas9. Exoc3l KO mice were viable and showed no significant phenotype in embryonic angiogenesis or postnatal retinal angiogenesis. Exoc3l KO mice also showed no significant alteration in cholesterol homeostasis or insulin secretion, although several reports suggest an association of Exoc3l with these processes. Despite the implied roles, Exoc3l KO mice exhibited no apparent phenotype in vascular development, cholesterol homeostasis, or insulin secretion.


Subject(s)
Loss of Function Mutation , Vesicular Transport Proteins , Animals , Mice , Humans , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Endothelial Cells/metabolism , Insulin Secretion , Cholesterol , Mammals/metabolism
9.
Cell Rep ; 42(6): 112641, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37310861

ABSTRACT

Branched-chain amino acid (BCAA) metabolism is linked to glucose homeostasis, but the underlying signaling mechanisms are unclear. We find that gluconeogenesis is reduced in mice deficient of Ppm1k, a positive regulator of BCAA catabolism, which protects against obesity-induced glucose intolerance. Accumulation of branched-chain keto acids (BCKAs) inhibits glucose production in hepatocytes. BCKAs suppress liver mitochondrial pyruvate carrier (MPC) activity and pyruvate-supported respiration. Pyruvate-supported gluconeogenesis is selectively suppressed in Ppm1k-deficient mice and can be restored with pharmacological activation of BCKA catabolism by BT2. Finally, hepatocytes lack branched-chain aminotransferase that alleviates BCKA accumulation via reversible conversion between BCAAs and BCKAs. This renders liver MPC most susceptible to circulating BCKA levels hence a sensor of BCAA catabolism.


Subject(s)
Keto Acids , Monocarboxylic Acid Transporters , Mice , Animals , Keto Acids/metabolism , Monocarboxylic Acid Transporters/metabolism , Gluconeogenesis , Amino Acids, Branched-Chain/metabolism , Hepatocytes/metabolism , Pyruvates/metabolism , Glucose/metabolism
10.
Sci Rep ; 12(1): 3449, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236897

ABSTRACT

Brown adipose tissue (BAT) dissipates chemical energy as heat through uncoupling protein 1 (UCP1). The induction of mitochondrial reactive oxygen species (ROS) in BAT was recently identified as a mechanism that supports UCP1-dependent thermogenesis. We previously demonstrated that nardilysin (NRDC) plays critical roles in body temperature homeostasis. Global NRDC-deficient (Nrdc-/-) mice show hypothermia due to a lower set point for body temperature, whereas BAT thermogenesis at room temperature (RT) is enhanced mainly to compensate for poor thermal insulation. To examine the primary role of NRDC in BAT thermogenesis, we generated adipocyte-specific NRDC-deficient (Adipo-KO) mice by mating Nrdc floxed (Nrdcflox/flox) mice with adiponectin-Cre mice. Adipo-KO mice showed hyperthermia at both RT and thermoneutrality. They were also more cold-tolerant than Nrdcflox/flox mice. However, UCP1 mRNA levels were significantly lower in Adipo-KO BAT at RT, thermoneutrality, and 4 °C, whereas no significant differences were observed in UCP1 protein levels at RT and 4 °C. We examined the protein stability of UCP1 using the cycloheximide chase assay and found that NRDC negatively regulated its stability via the ubiquitin-proteasome pathway. NRDC may be also involved in ROS-mediated in vivo thermogenesis because the inhibitory effects of N-acetyl cysteine, an ROS scavenger, on ß3 agonist-induced thermogenesis were stronger in Adipo-KO mice. Collectively, the present results demonstrate that NRDC in BAT controls adaptive thermogenesis and body temperature homeostasis possibly via the regulation of UCP1 protein stability and ROS levels.


Subject(s)
Body Temperature Regulation , Metalloendopeptidases , Thermogenesis , Uncoupling Protein 1 , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Animals , Body Temperature , Body Temperature Regulation/physiology , Metalloendopeptidases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/biosynthesis , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
11.
Mol Metab ; 59: 101458, 2022 05.
Article in English | MEDLINE | ID: mdl-35189429

ABSTRACT

OBJECTIVE: The intestine is an important organ for nutrient metabolism via absorption and endocrine systems. Nutrients regulate O-GlcNAcylation, a post-translational modification of various proteins by O-GlcNAc transferase (OGT). We have previously shown that general OGT knockout induced severe weight loss and hypoglycaemia in mice, but little is known about how O-GlcNAcylation in the intestine modulates nutrient metabolism, especially glucose metabolism, through absorption. We aimed to reveal the roles of O-GlcNAcylation in glucose absorption by the small intestine and elucidate the mechanism by which O-GlcNAcylation regulates sodium-glucose cotransporter 1 (SGLT1) expression. METHODS: First, we fasted normal mice and examined the changes in glucose transporters and O-GlcNAcylation in the intestine. Then, we generated two lines of small intestine-specific OGT-deficient mice (congenital: Ogt-VKO, tamoxifen-inducible: Ogt-iVKO) and observed the changes in body weight and in glucose and lipid metabolism. Finally, we investigated Sglt1 gene regulation by O-GlcNAcylation using enteroendocrine STC-1 cells. RESULTS: Fasting decreased O-GlcNAcylation in the intestinal epithelium of normal mice. The Ogt-VKO mice showed significantly lower non-fasted blood glucose levels and were underweight compared with litter matched controls. Glycaemic excursion in the Ogt-VKO mice was significantly lower during the oral glucose tolerance test but comparable during the intraperitoneal glucose tolerance test. Furthermore, the Ogt-VKO mice exhibited lower Sglt1 expression in the small intestine compared with the control mice. We obtained similar results using the Ogt-iVKO mice only after tamoxifen administration. The oral d-xylose administration test revealed that the intestinal sugar absorption was diminished in the Ogt-iVKO mice and that GLP-1 secretion did not sufficiently increase after glucose gavage in the Ogt-iVKO mice. When using STC-1 cells, O-GlcNAcylation increased Sglt1 mRNA via a PKA/CREB-dependent pathway. CONCLUSION: Collectively, loss of O-GlcNAcylation in the intestine reduced glucose absorption via suppression of SGLT1 expression; this may lead to new treatments for malabsorption, obesity and diabetes.


Subject(s)
Blood Glucose , Body Weight , Intestines , Sodium-Glucose Transporter 1 , Animals , Blood Glucose/metabolism , Glucose/metabolism , Intestines/metabolism , Mice , Obesity , Sodium-Glucose Transporter 1/genetics , Tamoxifen
12.
Sci Rep ; 9(1): 14801, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31616027

ABSTRACT

Inflammation resulting from virus infection is the cause of myocarditis; however, the precise mechanism by which inflammation induces cardiac dysfunction is still unclear. In this study, we investigated the contribution of insulin signalling to inflammatory cardiac dysfunction induced by the activation of signalling by NF-κB, a major transcriptional factor regulating inflammation. We generated mice constitutively overexpressing kinase-active IKK-ß, an essential kinase for NF-κB activation, in cardiomyocytes (KA mice). KA mice demonstrated poor survival and significant cardiac dysfunction with remarkable dilation. Histologically, KA hearts revealed increased cardiac apoptosis and fibrosis and the enhanced recruitment of immune cells. By molecular analysis, we observed the increased phosphorylation of IRS-1, indicating the suppression of insulin signalling in KA hearts. To evaluate the contribution of insulin signalling to cardiac dysfunction in KA hearts, we generated mice with cardiac-specific suppression of phosphatase and tensin homologue 10 (PTEN), a negative regulator of insulin signalling, in the KA mouse background (KA-PTEN). The suppression of PTEN successfully improved insulin signalling in KA-PTEN hearts, and interestingly, KA-PTEN mice showed significantly improved cardiac function and survival. These results indicated that impaired insulin signalling underlies the mechanism involved in inflammation-induced cardiac dysfunction, which suggests that it may be a target for the treatment of myocarditis.


Subject(s)
I-kappa B Kinase/metabolism , Insulin/metabolism , Myocarditis/immunology , Myocytes, Cardiac/pathology , Signal Transduction/immunology , Animals , Disease Models, Animal , Echocardiography , Electrocardiography , Female , Humans , I-kappa B Kinase/genetics , Male , Mice , Mice, Transgenic , Myocarditis/diagnosis , Myocarditis/genetics , Myocarditis/pathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
13.
Clin Cancer Res ; 25(2): 619-628, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30352908

ABSTRACT

PURPOSE: Few studies have investigated prognostic biomarkers in patients with intrahepatic cholangiocarcinoma (ICC). Nardilysin (NRDC), a metalloendopeptidase of the M16 family, has been suggested to play important roles in inflammation and several cancer types. We herein examined the clinical significance and biological function of NRDC in ICC.Experimental Design: We measured serum NRDC levels in 98 patients with ICC who underwent surgical resection in two independent cohorts to assess its prognostic impact. We also analyzed NRDC mRNA levels in cancerous tissue specimens from 43 patients with ICC. We investigated the roles of NRDC in cell proliferation, migration, gemcitabine sensitivity, and gene expression in ICC cell lines using gene silencing. RESULTS: High serum NRDC levels were associated with shorter overall survival and disease-free survival in the primary (n = 79) and validation (n = 19) cohorts. A correlation was observed between serum protein levels and cancerous tissue mRNA levels of NRDC (Spearman ρ = 0.413; P = 0.006). The gene knockdown of NRDC in ICC cell lines attenuated cell proliferation, migration, and tumor growth in xenografts, and increased sensitivity to gemcitabine. The gene knockdown of NRDC was also accompanied by significant changes in the expression of several epithelial-mesenchymal transition (EMT)-related genes. Strong correlations were observed between the mRNA levels of NRDC and EMT-inducing transcription factors, ZEB1 and SNAI1, in surgical specimens from patients with ICC. CONCLUSIONS: Serum NRDC, a possible surrogate marker reflecting the EMT state in primary tumors, predicts the outcome of ICC after surgical resection.


Subject(s)
Bile Duct Neoplasms/blood , Bile Duct Neoplasms/pathology , Biomarkers, Tumor , Cholangiocarcinoma/blood , Cholangiocarcinoma/pathology , Epithelial-Mesenchymal Transition , Metalloendopeptidases/blood , Adult , Aged , Aged, 80 and over , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/therapy , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/mortality , Cholangiocarcinoma/therapy , Combined Modality Therapy , Female , Gene Knockdown Techniques , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Treatment Outcome
14.
JCI Insight ; 3(8)2018 04 19.
Article in English | MEDLINE | ID: mdl-29669932

ABSTRACT

Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/metabolism , Metalloendopeptidases/metabolism , Metalloendopeptidases/therapeutic use , Adult , Aged , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Disease Models, Animal , Epigenomics , Female , Gene Deletion , Histone Deacetylase 1 , Humans , Male , Mice , Middle Aged , Neoplasm Staging , Tumor Suppressor Protein p53/metabolism
15.
Sci Rep ; 7(1): 14801, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093577

ABSTRACT

Post-translational histone modifications, such as acetylation and methylation, are prerequisites for transcriptional regulation. The metalloendopeptidase nardilysin (Nrdc) is a H3K4me2-binding protein that controls thermoregulation and ß-cell functions through its transcriptional coregulator function. We herein combined high-throughput ChIP-seq and RNA-seq to achieve the first genome-wide identification of Nrdc target genes. A ChIP-seq analysis of immortalized mouse embryo fibroblasts (iMEF) identified 4053 Nrdc-binding sites, most of which were located in proximal promoter sites (2587 Nrdc-binding genes). Global H3K4me2 levels at Nrdc-binding promoters slightly increased, while H3K9ac levels decreased in the absence of Nrdc. Among Nrdc-binding genes, a comparative RNA-seq analysis identified 448 candidates for Nrdc target genes, among which cell cycle-related genes were significantly enriched. We confirmed decreased mRNA and H3K9ac levels at the promoters of individual genes in Nrdc-deficient iMEF, which were restored by the ectopic introduction of Nrdc. Reduced mRNA levels, but not H3K9ac levels were fully restored by the reintroduction of the peptidase-dead mutant of Nrdc. Furthermore, Nrdc promoted cell cycle progression at multiple stages, which enhanced cell proliferation in vivo. Collectively, our integrative studies emphasize the importance of Nrdc for maintaining a proper epigenetic status and cell growth.


Subject(s)
Cell Cycle , Epigenesis, Genetic , Gene Expression Profiling , Genome-Wide Association Study , Metalloendopeptidases/metabolism , Animals , Cell Line, Tumor , Metalloendopeptidases/genetics , Mice , Mice, Knockout
16.
RMD Open ; 3(1): e000436, 2017.
Article in English | MEDLINE | ID: mdl-28955486

ABSTRACT

OBJECTIVE: Tumour necrosis factor alpha (TNF-α) plays an important role in rheumatoid arthritis (RA). TNF-α is synthesised as a membrane-anchored precursor and is fully activated by a disintegrin and metalloproteinase 17 (ADAM17)-mediated ectodomain shedding. Nardilysin (NRDC) facilitates ectodomain shedding via activation of ADAM17. This study was undertaken to elucidate the role of NRDC in RA. METHODS: NRDC-deficient (Nrdc-/- ) mice and macrophage-specific NRDC-deficient (NrdcdelM ) mice were examined in murine RA models, collagen antibody-induced arthritis (CAIA) and K/BxN serum transfer arthritis (K/BxN STA). We evaluated the effect of gene deletion or silencing of Nrdc on ectodomain shedding of TNF-α in macrophages or monocytes. NRDC concentration in synovial fluid from patients with RA and osteoarthritis (OA) were measured. We also examined whether local gene silencing of Nrdc ameliorated CAIA. RESULTS: CAIA and K/BxN STA were significantly attenuated in Nrdc-/- mice and NrdcdelM mice. Gene deletion or silencing of Nrdc in macrophages or THP-1 cells resulted in the reduction of TNF-α shedding. The level of NRDC is higher in synovial fluid from RA patients compared with that from OA patients. Intra-articular injection of anti-Nrdcsmall interfering RNA ameliorated CAIA. CONCLUSION: These data indicate that NRDC plays crucial roles in the pathogenesis of autoimmune arthritis and could be a new therapeutic target for RA treatment.

17.
Int J Cardiol ; 243: 1-8, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28747015

ABSTRACT

BACKGROUND: Biomarkers for detection of transient myocardial ischemia in patients with unstable angina (UA) or for very early diagnosis of acute myocardial infarction (AMI) are not currently available. METHODS AND RESULTS: We performed two sequential screenings of autoantibodies elevated shortly after the onset of acute coronary syndrome (ACS), and focused on metalloendopeptidase nardilysin (NRDC) among 19 identified candidate antigens. In a retrospective analysis among 93 ACS and 117 non-ACS patients, the serum level of NRDC was significantly increased in patients with ACS compared with that in patients with non-ACS (2073.5±189.8pg/ml versus 775.7±63.4pg/ml, P<0.0001). The area under the curve of NRDC for the diagnosis of ACS was 0.822 by the receiver operating characteristic curves analysis. In the time course analysis in 43 consecutive ACS patients (AMI: N=35 and UA: N=8), serum concentration of NRDC was significantly increased even in UA patients with a peak serum NRDC levels reached at admission both in AMI and UA patients. In a mouse model of AMI, we found an acute increase in serum NRDC and reduced NRDC expression in ischemic regions shortly after coronary artery ligation. NRDC expression was also reduced in infarcted regions in human autopsy samples from AMI patients. Moreover, the short treatment of primary culture of rat cardiomyocytes with H2O2 or A23187 induced NRDC secretion without cell toxicity. CONCLUSION: NRDC is a promising biomarker for the early detection of ACS, even in UA patients without elevation of necrosis markers.


Subject(s)
Acute Coronary Syndrome/blood , Acute Coronary Syndrome/diagnosis , Autoantibodies/blood , Metalloendopeptidases/blood , Aged , Animals , Biomarkers/blood , Cells, Cultured , Early Diagnosis , Female , Humans , Male , Mice , Middle Aged , Rats , Retrospective Studies
18.
Diabetes ; 65(10): 3015-27, 2016 10.
Article in English | MEDLINE | ID: mdl-27385158

ABSTRACT

Type 2 diabetes (T2D) is associated with pancreatic ß-cell dysfunction, manifested by reduced glucose-stimulated insulin secretion (GSIS). Several transcription factors enriched in ß-cells, such as MafA, control ß-cell function by organizing genes involved in GSIS. Here we demonstrate that nardilysin (N-arginine dibasic convertase; Nrd1 and NRDc) critically regulates ß-cell function through MafA. Nrd1(-/-) mice showed glucose intolerance and severely decreased GSIS. Islets isolated from Nrd1(-/-) mice exhibited reduced insulin content and impaired GSIS in vitro. Moreover, ß-cell-specific NRDc-deficient (Nrd1(delß)) mice showed a diabetic phenotype with markedly reduced GSIS. MafA was specifically downregulated in islets from Nrd1(delß) mice, whereas overexpression of NRDc upregulated MafA and insulin expression in INS832/13 cells. Chromatin immunoprecipitation assay revealed that NRDc is associated with Islet-1 in the enhancer region of MafA, where NRDc controls the recruitment of Islet-1 and MafA transcription. Our findings demonstrate that NRDc controls ß-cell function via regulation of the Islet-1-MafA pathway.


Subject(s)
Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/metabolism , Metalloendopeptidases/metabolism , Animals , Chromatin Immunoprecipitation , Glucose/pharmacology , Glucose Intolerance/genetics , Glucose Intolerance/physiopathology , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Maf Transcription Factors, Large/genetics , Metalloendopeptidases/genetics , Mice , Mice, Knockout , Protein Binding
19.
Neurobiol Aging ; 35(1): 213-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23954170

ABSTRACT

Amyloid beta (Aß) peptide, the main component of senile plaques in patients with Alzheimer's disease (AD), is derived from proteolytic cleavage of amyloid precursor protein (APP) by ß- and γ-secretases. Alpha-cleavage of APP by α-secretase has a potential to preclude the generation of Aß because it occurs within the Aß domain. We previously reported that a metalloendopeptidase, nardilysin (N-arginine dibasic convertase; NRDc) enhances α-cleavage of APP, which results in the decreased generation of Aß in vitro. To clarify the in vivo role of NRDc in AD, we intercrossed transgenic mice expressing NRDc in the forebrain with an AD mouse model. Here we demonstrate that the neuron-specific overexpression of NRDc prevents Aß deposition in the AD mouse model. The activity of α-secretase in the mouse brain was enhanced by the overexpression of NRDc, and was reduced by the deletion of NRDc. However, reactive gliosis adjacent to the Aß plaques, one of the pathological features of AD, was not affected by the overexpression of NRDc. Taken together, our results indicate that NRDc controls Aß formation through the regulation of α-secretase.


Subject(s)
Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Peptides/metabolism , Brain/enzymology , Metalloendopeptidases/physiology , Plaque, Amyloid/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Enzyme Activation/genetics , Gene Expression Regulation, Enzymologic/genetics , Metalloendopeptidases/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proteolysis
20.
Nat Commun ; 5: 3224, 2014.
Article in English | MEDLINE | ID: mdl-24492630

ABSTRACT

Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1(-/-) mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1(-/-) mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of ß3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation.


Subject(s)
Metalloendopeptidases/physiology , Thermogenesis , Animals , COS Cells , Chlorocebus aethiops , Female , Hypothermia/genetics , Ion Channels/metabolism , Male , Mice , Mitochondrial Proteins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/metabolism , Uncoupling Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL