Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 513
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 24(2): 320-336, 2023 02.
Article in English | MEDLINE | ID: mdl-36717722

ABSTRACT

Antigen receptor loci are organized into variable (V), diversity (D) and joining (J) gene segments that rearrange to generate antigen receptor repertoires. Here, we identified an enhancer (E34) in the murine immunoglobulin kappa (Igk) locus that instructed rearrangement of Vκ genes located in a sub-topologically associating domain, including a Vκ gene encoding for antibodies targeting bacterial phosphorylcholine. We show that E34 instructs the nuclear repositioning of the E34 sub-topologically associating domain from a recombination-repressive compartment to a recombination-permissive compartment that is marked by equivalent activating histone modifications. Finally, we found that E34-instructed Vκ-Jκ rearrangement was essential to combat Streptococcus pneumoniae but not methicillin-resistant Staphylococcus aureus or influenza infections. We propose that the merging of Vκ genes with Jκ elements is instructed by one-dimensional epigenetic information imposed by enhancers across Vκ and Jκ genomic regions. The data also reveal how enhancers generate distinct antibody repertoires that provide protection against lethal bacterial infection.


Subject(s)
Chromatin , Methicillin-Resistant Staphylococcus aureus , Mice , Animals , Chromatin/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin kappa-Chains/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , B-Lymphocytes , Epigenesis, Genetic
2.
Cell ; 182(5): 1311-1327.e14, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888495

ABSTRACT

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.


Subject(s)
Bacteremia/blood , Bacteremia/mortality , Staphylococcal Infections/blood , Staphylococcal Infections/mortality , Staphylococcus aureus/pathogenicity , Animals , Bacteremia/metabolism , Biomarkers/blood , Biomarkers/metabolism , Disease Models, Animal , Female , Humans , Male , Metabolomics/methods , Mice , Middle Aged , Prognosis , Proteomics/methods , Risk Factors , Staphylococcal Infections/metabolism
3.
Genes Dev ; 34(3-4): 149-165, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31919189

ABSTRACT

Differentiating neutrophils undergo large-scale changes in nuclear morphology. How such alterations in structure are established and modulated upon exposure to microbial agents is largely unknown. Here, we found that prior to encounter with bacteria, an armamentarium of inflammatory genes was positioned in a transcriptionally passive environment suppressing premature transcriptional activation. Upon microbial exposure, however, human neutrophils rapidly (<3 h) repositioned the ensemble of proinflammatory genes toward the transcriptionally permissive compartment. We show that the repositioning of genes was closely associated with the swift recruitment of cohesin across the inflammatory enhancer landscape, permitting an immediate transcriptional response upon bacterial exposure. We found that activated enhancers, marked by increased deposition of H3K27Ac, were highly enriched for cistromic elements associated with PU.1, CEBPB, TFE3, JUN, and FOSL2 occupancy. These data reveal how upon microbial challenge the cohesin machinery is recruited to an activated enhancer repertoire to instruct changes in chromatin folding, nuclear architecture, and to activate an inflammatory gene program.


Subject(s)
Cell Nucleus/immunology , Chromatin/immunology , Escherichia coli Infections/immunology , Neutrophils/immunology , Transcriptional Activation/genetics , Transcriptional Activation/immunology , Cells, Cultured , Escherichia coli , Histones/metabolism , Humans
4.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38306481

ABSTRACT

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Endothelial Cells , Proteome , Peptides
5.
Proc Natl Acad Sci U S A ; 120(30): e2301538120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459522

ABSTRACT

Pseudomonas aeruginosa (PA) CbpD belongs to the lytic polysaccharide monooxygenases (LPMOs), a family of enzymes that cleave chitin or related polysaccharides. Here, we demonstrate a virulence role of CbpD in PA pneumonia linked to impairment of host complement function and opsonophagocytic clearance. Following intratracheal challenge, a PA ΔCbpD mutant was more easily cleared and produced less mortality than the wild-type parent strain. The x-ray crystal structure of the CbpD LPMO domain was solved to subatomic resolution (0.75Å) and its two additional domains modeled by small-angle X-ray scattering and Alphafold2 machine-learning algorithms, allowing structure-based immune epitope mapping. Immunization of naive mice with recombinant CbpD generated high IgG antibody titers that promoted human neutrophil opsonophagocytic killing, neutralized enzymatic activity, and protected against lethal PA pneumonia and sepsis. IgG antibodies generated against full-length CbpD or its noncatalytic M2+CBM73 domains were opsonic and protective, even in previously PA-exposed mice, while antibodies targeting the AA10 domain were not. Preexisting antibodies in PA-colonized cystic fibrosis patients primarily target the CbpD AA10 catalytic domain. Further exploration of LPMO family proteins, present across many clinically important and antibiotic-resistant human pathogens, may yield novel and effective vaccine antigens.


Subject(s)
Mixed Function Oxygenases , Pneumonia , Humans , Mice , Animals , Mixed Function Oxygenases/metabolism , Pseudomonas aeruginosa/metabolism , Polysaccharides/metabolism , Immunization
6.
J Infect Dis ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728418

ABSTRACT

Neutrophils possess a diverse repertoire of pathogen clearance mechanisms, one of which is the formation of neutrophil extracellular traps (NETs). NETs are complexes of histone proteins and DNA coated with proteolytic enzymes that are released extracellularly to entrap pathogens and aid in their clearance, in a process known as NETosis. Intravascular NETosis may drive a massive inflammatory response that has been shown to contribute to morbidity and mortality in many infectious diseases, including malaria, dengue fever, influenza, bacterial sepsis, and SARS-CoV-2 infection. In this review we seek to: (1) summarize the current understanding of NETs; (2) discuss infectious diseases in which NET formation contributes to morbidity and mortality; and (3) explore potential adjunctive therapeutics that may be considered for future study in treating severe infections driven by NET pathophysiology. This includes drugs specifically targeting NET inhibition and FDA-approved drugs that may be repurposed as NET inhibitors.

7.
J Biol Chem ; 299(8): 104980, 2023 08.
Article in English | MEDLINE | ID: mdl-37390991

ABSTRACT

Coiled coil-forming M proteins of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes (strep A) are immunodominant targets of opsonizing antibodies. However, antigenic sequence variability of M proteins into >220 M types, as defined by their hypervariable regions (HVRs), is considered to limit M proteins as vaccine immunogens because of type specificity in the antibody response. Surprisingly, a multi-HVR immunogen in clinical vaccine trials was shown to elicit M-type crossreactivity. The basis for this crossreactivity is unknown but may be due in part to antibody recognition of a 3D pattern conserved in many M protein HVRs that confers binding to human complement C4b-binding protein (C4BP). To test this hypothesis, we investigated whether a single M protein immunogen carrying the 3D pattern would elicit crossreactivity against other M types carrying the 3D pattern. We found that a 34-amino acid sequence of S. pyogenes M2 protein bearing the 3D pattern retained full C4BP-binding capacity when fused to a coiled coil-stabilizing sequence from the protein GCN4. We show that this immunogen, called M2G, elicited cross-reactive antibodies against a number of M types that carry the 3D pattern but not against those that lack the 3D pattern. We further show that the M2G antiserum-recognized M proteins displayed natively on the strep A surface and promoted the opsonophagocytic killing of strep A strains expressing these M proteins. As C4BP binding is a conserved virulence trait of strep A, we propose that targeting the 3D pattern may prove advantageous in vaccine design.


Subject(s)
Antigens, Bacterial , Bacterial Outer Membrane Proteins , Carrier Proteins , Streptococcus pyogenes , Humans , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/immunology , Carrier Proteins/chemistry , Carrier Proteins/immunology , Protein Binding , Streptococcus pyogenes/immunology , Cross Reactions
8.
Trends Genet ; 37(8): 745-757, 2021 08.
Article in English | MEDLINE | ID: mdl-33745750

ABSTRACT

Bacterial resistance to antibiotics has reached critical levels, skyrocketing in hospitals and the environment and posing a major threat to global public health. The complex and challenging problem of reducing antibiotic resistance (AR) requires a network of both societal and science-based solutions to preserve the most lifesaving pharmaceutical intervention known to medicine. In addition to developing new classes of antibiotics, it is essential to safeguard the clinical efficacy of existing drugs. In this review, we examine the potential application of novel CRISPR-based genetic approaches to reducing AR in both environmental and clinical settings and prolonging the utility of vital antibiotics.


Subject(s)
Anti-Bacterial Agents/therapeutic use , CRISPR-Cas Systems/genetics , Drug Resistance, Microbial/genetics , Genome, Bacterial/genetics , Anti-Bacterial Agents/adverse effects , Gene Editing/methods , Genome, Bacterial/drug effects , Humans
9.
J Clin Microbiol ; 62(1): e0036623, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37966224

ABSTRACT

Significant shortcomings have been identified in standard methods of susceptibility testing in bacteriological media, not only because the media fails to recapitulate the in vivo environment, but susceptibility testing itself fails to capture sub-MIC effects that significantly attenuate bacterial virulence properties. Until susceptibility testing conditions better recapitulate the in vivo environment, attempts to establish the quantitative relevance of beta-lactam MIC using current clinical microbiology standards in Staphylococcus aureus infections will likely prove unsuccessful.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Staphylococcus aureus , beta-Lactams/pharmacology , Equidae , Staphylococcal Infections/diagnosis , Staphylococcal Infections/veterinary , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
10.
J Pharmacol Exp Ther ; 389(3): 289-300, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38580449

ABSTRACT

Invasive bacterial infections and sepsis are persistent global health concerns, complicated further by the escalating threat of antibiotic resistance. Over the past 40 years, collaborative endeavors to improve the diagnosis and critical care of septic patients have improved outcomes, yet grappling with the intricate immune dysfunction underlying the septic condition remains a formidable challenge. Anti-inflammatory interventions that exhibited promise in murine models failed to manifest consistent survival benefits in clinical studies through recent decades. Novel therapeutic approaches that target bacterial virulence factors, for example with monoclonal antibodies, aim to thwart pathogen-driven damage and restore an advantage to the immune system. A pioneering technology addressing this challenge is biomimetic nanoparticles-a therapeutic platform featuring nanoscale particles enveloped in natural cell membranes. Borne from the quest for a durable drug delivery system, the original red blood cell-coated nanoparticles showcased a broad capacity to absorb bacterial and environmental toxins from serum. Tailoring the membrane coating to immune cell sources imparts unique characteristics to the nanoparticles suitable for broader application in infectious disease. Their capacity to bind both inflammatory signals and virulence factors assembles the most promising sepsis therapies into a singular, pathogen-agnostic therapeutic. This review explores the ongoing work on immune cell-coated nanoparticle therapeutics for infection and sepsis. SIGNIFICANCE STATEMENT: Invasive bacterial infections and sepsis are a major global health problem made worse by expanding antibiotic resistance, meaning better treatment options are urgently needed. Biomimetic cell-membrane-coated nanoparticles are an innovative therapeutic platform that deploys a multifaceted mechanism to action to neutralize microbial virulence factors, capture endotoxins, and bind excessive host proinflammatory cytokines, seeking to reduce host tissue injury, aid in microbial clearance, and improve patient outcomes.


Subject(s)
Bacterial Infections , Biomimetic Materials , Nanomedicine , Sepsis , Humans , Animals , Sepsis/drug therapy , Sepsis/immunology , Sepsis/microbiology , Nanomedicine/methods , Bacterial Infections/drug therapy , Bacterial Infections/immunology , Biomimetic Materials/administration & dosage , Biomimetic Materials/therapeutic use , Cell Membrane/metabolism , Cell Membrane/drug effects , Biomimetics/methods , Nanoparticles
11.
PLoS Pathog ; 18(9): e1010829, 2022 09.
Article in English | MEDLINE | ID: mdl-36103556

ABSTRACT

Multidrug-resistant (MDR) Enterococcus faecalis are major causes of hospital-acquired infections. Numerous clinical strains of E. faecalis harbor a large pathogenicity island that encodes enterococcal surface protein (Esp), which is suggested to promote biofilm production and virulence, but this remains controversial. To resolve this issue, we characterized the Esp N-terminal region, the portion implicated in biofilm production. Small angle X-ray scattering indicated that the N-terminal region had a globular head, which consisted of two DEv-Ig domains as visualized by X-ray crystallography, followed by an extended tail. The N-terminal region was not required for biofilm production but instead significantly strengthened biofilms against mechanical or degradative disruption, greatly increasing retention of Enterococcus within biofilms. Biofilm strengthening required low pH, which resulted in Esp unfolding, aggregating, and forming amyloid-like structures. The pH threshold for biofilm strengthening depended on protein stability. A truncated fragment of the first DEv-Ig domain, plausibly generated by a host protease, was the least stable and sufficient to strengthen biofilms at pH ≤ 5.0, while the entire N-terminal region and intact Esp on the enterococcal surface was more stable and required a pH ≤ 4.3. These results suggested a virulence role of Esp in strengthening enterococcal biofilms in acidic abiotic or host environments.


Subject(s)
Gram-Positive Bacterial Infections , Membrane Proteins , Bacterial Proteins/metabolism , Biofilms , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus faecalis , Humans , Membrane Proteins/metabolism , Peptide Hydrolases/metabolism
12.
Immunity ; 42(3): 484-98, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25746953

ABSTRACT

Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. However, the response of these cells in human sepsis and their contribution to sepsis pathogenesis is poorly understood. To investigate this, we performed a transcriptomic, functional, and mechanistic analysis of blood monocytes from patients during sepsis and after recovery. Our results revealed the functional plasticity of monocytes during human sepsis, wherein they transited from a pro-inflammatory to an immunosuppressive phenotype, while enhancing protective functions like phagocytosis, anti-microbial activity, and tissue remodeling. Mechanistically, hypoxia inducible factor-1α (HIF1α) mediated this functional re-programming of monocytes, revealing a potential mechanism for their therapeutic targeting to regulate human sepsis.


Subject(s)
Cellular Reprogramming/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Immunocompromised Host , Interleukin-1 Receptor-Associated Kinases/immunology , Sepsis/immunology , Adaptive Immunity , Convalescence , Cytokines/genetics , Cytokines/immunology , Gene Expression Profiling , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Immunity, Innate , Interleukin-1 Receptor-Associated Kinases/genetics , Monocytes/immunology , Monocytes/pathology , Phagocytosis , Sepsis/genetics , Sepsis/pathology , Signal Transduction , Transcriptome/immunology
13.
EMBO J ; 38(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30918008

ABSTRACT

Long noncoding RNAs (lncRNAs) can regulate target gene expression by acting in cis (locally) or in trans (non-locally). Here, we performed genome-wide expression analysis of Toll-like receptor (TLR)-stimulated human macrophages to identify pairs of cis-acting lncRNAs and protein-coding genes involved in innate immunity. A total of 229 gene pairs were identified, many of which were commonly regulated by signaling through multiple TLRs and were involved in the cytokine responses to infection by group B Streptococcus We focused on elucidating the function of one lncRNA, named lnc-MARCKS or ROCKI (Regulator of Cytokines and Inflammation), which was induced by multiple TLR stimuli and acted as a master regulator of inflammatory responses. ROCKI interacted with APEX1 (apurinic/apyrimidinic endodeoxyribonuclease 1) to form a ribonucleoprotein complex at the MARCKS promoter. In turn, ROCKI-APEX1 recruited the histone deacetylase HDAC1, which removed the H3K27ac modification from the promoter, thus reducing MARCKS transcription and subsequent Ca2+ signaling and inflammatory gene expression. Finally, genetic variants affecting ROCKI expression were linked to a reduced risk of certain inflammatory and infectious disease in humans, including inflammatory bowel disease and tuberculosis. Collectively, these data highlight the importance of cis-acting lncRNAs in TLR signaling, innate immunity, and pathophysiological inflammation.


Subject(s)
Gene Expression Regulation , Immunity, Innate/immunology , Inflammation/immunology , Macrophages/immunology , RNA, Long Noncoding/metabolism , Streptococcal Infections/microbiology , Toll-Like Receptors/metabolism , Cells, Cultured , Cytokines/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Genome, Human , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Humans , Inflammation/genetics , Inflammation/microbiology , Macrophages/metabolism , Macrophages/microbiology , Myristoylated Alanine-Rich C Kinase Substrate/genetics , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Streptococcal Infections/immunology , Streptococcus agalactiae/isolation & purification , Toll-Like Receptors/genetics
14.
Nat Mater ; 21(11): 1324-1332, 2022 11.
Article in English | MEDLINE | ID: mdl-36138145

ABSTRACT

Bioinspired microrobots capable of actively moving in biological fluids have attracted considerable attention for biomedical applications because of their unique dynamic features that are otherwise difficult to achieve by their static counterparts. Here we use click chemistry to attach antibiotic-loaded neutrophil membrane-coated polymeric nanoparticles to natural microalgae, thus creating hybrid microrobots for the active delivery of antibiotics in the lungs in vivo. The microrobots show fast speed (>110 µm s-1) in simulated lung fluid and uniform distribution into deep lung tissues, low clearance by alveolar macrophages and superb tissue retention time (>2 days) after intratracheal administration to test animals. In a mouse model of acute Pseudomonas aeruginosa pneumonia, the microrobots effectively reduce bacterial burden and substantially lessen animal mortality, with negligible toxicity. Overall, these findings highlight the attractive functions of algae-nanoparticle hybrid microrobots for the active in vivo delivery of therapeutics to the lungs in intensive care unit settings.


Subject(s)
Nanoparticles , Pneumonia, Bacterial , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pseudomonas aeruginosa , Lung
15.
Nat Immunol ; 12(2): 144-50, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21170027

ABSTRACT

Transcription factor NF-κB and its activating kinase IKKß are associated with inflammation and are believed to be critical for innate immunity. Despite the likelihood of immune suppression, pharmacological blockade of IKKß-NF-κB has been considered as a therapeutic strategy. However, we found neutrophilia in mice with inducible deletion of IKKß (Ikkß(Δ) mice). These mice had hyperproliferative granulocyte-macrophage progenitors and pregranulocytes and a prolonged lifespan of mature neutrophils that correlated with the induction of genes encoding prosurvival molecules. Deletion of interleukin 1 receptor 1 (IL-1R1) in Ikkß(Δ) mice normalized blood cellularity and prevented neutrophil-driven inflammation. However, Ikkß(Δ)Il1r1(-/-) mice, unlike Ikkß(Δ) mice, were highly susceptible to bacterial infection, which indicated that signaling via IKKß-NF-κB or IL-1R1 can maintain antimicrobial defenses in each other's absence, whereas inactivation of both pathways severely compromises innate immunity.


Subject(s)
Bacterial Infections/immunology , Granulocyte-Macrophage Progenitor Cells/metabolism , I-kappa B Kinase/metabolism , Interleukin-1beta/metabolism , Neutrophils/metabolism , Animals , Cell Count , Cell Growth Processes/genetics , Cell Survival/genetics , Cells, Cultured , Disease Susceptibility , Granulocyte-Macrophage Progenitor Cells/immunology , Granulocyte-Macrophage Progenitor Cells/pathology , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Immunity, Innate/genetics , Interleukin-1beta/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Neutrophils/immunology , Neutrophils/pathology , Receptors, Interleukin-1 Type I/genetics , Up-Regulation/genetics
16.
Nat Immunol ; 12(10): 966-74, 2011 Sep 04.
Article in English | MEDLINE | ID: mdl-21892173

ABSTRACT

Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.


Subject(s)
Glycolipids/immunology , Gram-Positive Bacteria/immunology , Natural Killer T-Cells/immunology , Animals , Antigens, CD1d/chemistry , Antigens, CD1d/physiology , Cell Line , Glycolipids/chemistry , Humans , Interferon-gamma/biosynthesis , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism
17.
Trends Immunol ; 41(6): 531-544, 2020 06.
Article in English | MEDLINE | ID: mdl-32303452

ABSTRACT

Neutrophil death can transpire via diverse pathways and is regulated by interactions with commensal and pathogenic microorganisms, environmental exposures, and cell age. At steady state, neutrophil turnover and replenishment are continually maintained via a delicate balance between host-mediated responses and microbial forces. Disruptions in this equilibrium directly impact neutrophil numbers in circulation, cell trafficking, antimicrobial defenses, and host well-being. How neutrophils meet their end is physiologically important and can result in different immunologic consequences. Whereas nonlytic forms of neutrophil death typically elicit anti-inflammatory responses and promote healing, pathways ending with cell membrane rupture may incite deleterious proinflammatory responses, which can exacerbate local tissue injury, lead to chronic inflammation, or precipitate autoimmunity. This review seeks to provide a contemporary analysis of mechanisms of neutrophil death.


Subject(s)
Apoptosis , Neutrophils , Animals , Humans , Inflammation/immunology , Neutrophils/cytology , Neutrophils/immunology
18.
Immunity ; 41(4): 518-28, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25367569

ABSTRACT

The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.


Subject(s)
Adaptive Immunity , Basic Helix-Loop-Helix Transcription Factors/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Immunity, Innate , Inflammation/immunology , Adaptation, Physiological , Animals , Bacterial Infections/immunology , Cell Differentiation/immunology , Cell Hypoxia/immunology , Humans , Inflammation/genetics , Mice , Neoplasms/immunology , Oxygen/metabolism , T-Lymphocytes/immunology , Virus Diseases/immunology
19.
Mol Cell ; 57(1): 55-68, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25544559

ABSTRACT

The protein LC3 is indispensible for the cellular recycling process of autophagy and plays critical roles during cargo recruitment, autophagosome biogenesis, and completion. Here, we report that LC3 is phosphorylated at threonine 50 (Thr(50)) by the mammalian Sterile-20 kinases STK3 and STK4. Loss of phosphorylation at this site blocks autophagy by impairing fusion of autophagosomes with lysosomes, and compromises the ability of cells to clear intracellular bacteria, an established cargo for autophagy. Strikingly, mutation of LC3 mimicking constitutive phosphorylation at Thr(50) reverses the autophagy block in STK3/STK4-deficient cells and restores their capacity to clear bacteria. Loss of STK3/STK4 impairs autophagy in diverse species, indicating that these kinases are conserved autophagy regulators. We conclude that phosphorylation of LC3 by STK3/STK4 is an essential step in the autophagy process. Since several pathological conditions, including bacterial infections, display aberrant autophagy, we propose that pharmacological agents targeting this regulatory circuit hold therapeutic potential.


Subject(s)
Autophagy/genetics , Fibroblasts/metabolism , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cells, Cultured , Embryo, Mammalian , Fibroblasts/microbiology , Gene Expression Regulation , Humans , Lysosomes/metabolism , Membrane Fusion , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Mutation , Peptide Fragments/chemistry , Phagosomes/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/deficiency , Serine-Threonine Kinase 3 , Signal Transduction , Streptococcus pyogenes/pathogenicity , Streptococcus pyogenes/physiology , Threonine/metabolism
20.
Proc Natl Acad Sci U S A ; 117(43): 26895-26906, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33055214

ABSTRACT

Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multimodular scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in macrophages. Upon challenge with either live microbes or microbe-derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress proinflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts. Myeloid-specific gene-depletion studies confirmed that the presence of GIV ameliorates dextran sodium sulfate-induced colitis and sepsis-induced death. The antiinflammatory actions of GIV are mediated via its C-terminally located TIR-like BB-loop (TILL) motif which binds the cytoplasmic TIR modules of TLR4 in a manner that precludes receptor dimerization; such dimerization is a prerequisite for proinflammatory signaling. Binding of GIV's TILL motif to TIR modules inhibits proinflammatory signaling via other TLRs, suggesting a convergent paradigm for fine-tuning macrophage inflammatory responses.


Subject(s)
Microfilament Proteins/metabolism , Toll-Like Receptor 4/metabolism , Vesicular Transport Proteins/metabolism , Animals , Colitis/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Macrophages/metabolism , Mice , Mice, Knockout , RAW 264.7 Cells , Sepsis/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL