Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Virol ; 98(5): e0023924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38647327

ABSTRACT

Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, Virus-Like Particle , Animals , Female , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue/prevention & control , Dengue/immunology , Dengue/virology , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue Virus/immunology , Disease Models, Animal , Immunoglobulin G/immunology , Macaca fascicularis , Macaca mulatta , Serogroup , Vaccination , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Virus Replication
2.
Mol Ther ; 32(7): 2328-2339, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38734900

ABSTRACT

Human T cell leukemia/T-lymphotropic virus type 1 (HTLV-1) infection occurs by cell-to-cell transmission and can induce fatal adult T cell leukemia. Vaccine development is critical for the control of HTLV-1 transmission. However, determining whether vaccine-induced anti-Env antibodies can prevent cell-to-cell HTLV-1 transmission is challenging. Here, we examined the protective efficacy of a vaccine inducing anti-Env antibodies against HTLV-1 challenge in cynomolgus macaques. Eight of 10 vaccinated macaques produced anti-HTLV-1 neutralizing antibodies (NAbs) and were protected from an intravenous challenge with 108 HTLV-1-producing cells. In contrast, the 2 vaccinated macaques without NAb induction and 10 unvaccinated controls showed HTLV-1 infection with detectable proviral load after challenge. Five of the eight protected macaques were administered with an anti-CD8 monoclonal antibody, but proviruses remained undetectable and no increase in anti-HTLV-1 antibodies was observed even after CD8+ cell depletion in three of them. Analysis of Env-specific T cell responses did not suggest involvement of vaccine-induced Env-specific T cell responses in the protection. These results indicate that anti-Env antibody induction by vaccination can result in functionally sterile HTLV-1 protection, implying the rationale for strategies aimed at anti-Env antibody induction in prophylactic HTLV-1 vaccine development.


Subject(s)
Antibodies, Neutralizing , HTLV-I Infections , Human T-lymphotropic virus 1 , Vaccination , Animals , Human T-lymphotropic virus 1/immunology , HTLV-I Infections/immunology , HTLV-I Infections/prevention & control , Antibodies, Neutralizing/immunology , Humans , Macaca fascicularis , Viral Load , CD8-Positive T-Lymphocytes/immunology , Gene Products, env/immunology , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Disease Models, Animal
3.
PLoS Pathog ; 17(7): e1009668, 2021 07.
Article in English | MEDLINE | ID: mdl-34280241

ABSTRACT

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/veterinary , Macaca fascicularis/immunology , Macaca fascicularis/virology , Monkey Diseases/immunology , Monkey Diseases/virology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Female , Humans , Kinetics , Lymphocyte Depletion/veterinary , Male , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , Virus Replication/immunology
4.
Mol Ther ; 30(5): 2048-2057, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35231604

ABSTRACT

Effective T cell induction is an important strategy in HIV-vaccine development. However, it has been indicated that vaccine-induced HIV-specific CD4+ T cells, the preferential targets of HIV infection, might increase viral acquisition after HIV exposure. We have recently developed an immunogen (CaV11), tandemly connected overlapping 11-mer peptides spanning the simian immunodeficiency virus (SIV) Gag capsid and Vif proteins, to selectively induce Gag- and Vif-specific CD8+ T cells but not CD4+ T cells. Here, we show protective efficacy of a CaV11-expressing vaccine against repeated intrarectal low-dose SIVmac239 challenge in rhesus macaques. Eight of the twelve vaccinated macaques were protected after eight challenges. Kaplan-Meier analysis indicated significant protection in the vaccinees compared to the unvaccinated macaques. Vaccine-induced Gag-specific CD8+ T cell responses were significantly higher in the protected than the unprotected vaccinees. These results suggest that classical CD8+ T cell induction by viral Env-independent vaccination can confer protection from intrarectal SIV acquisition, highlighting the rationale for this immunogen design to induce virus-specific CD8+ T cells but not CD4+ T cells in HIV-vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , SAIDS Vaccines , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes , HIV Infections/prevention & control , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/prevention & control
5.
Biochem Biophys Res Commun ; 607: 124-130, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35367824

ABSTRACT

CD8+ T-cell responses exert strong suppressive pressure on viral replication and select for viral escape mutations in HIV infection. Multiple viral epitopes restricted by major histocompatibility complex class I (MHC-I) are targeted by CD8+ T cells. Sequential selection of viral escape mutations in individual epitope-coding regions could result in failure in CD8+ T cell-based viral control leading to disease progression. However, how this sequential selection of epitope mutations occurs has not fully been determined. Here, we examined sequential selection of viral mutations in seven CD8+ T-cell epitope-coding regions in a macaque AIDS model of simian immunodeficiency virus mac239 (SIVmac239) infection. In seven SIVmac239-infected Burmese rhesus macaques possessing MHC-I haplotype 90-120-Ia, selection of viral mutations was observed in five to seven of the seven 90-120-Ia-associated CD8+ T-cell epitope-coding regions in a year post-infection. Of the seven CD8+ T-cell epitopes, viral mutation selection was detected first at two epitopes, Gag206-216 and Nef9-19, but was found finally at Vif114-124 epitope in most animals. Viral loads in 6 months were significantly associated with the number of mutated CD8+ T-cell epitope-coding regions 1 year post-infection. Tetramer analysis revealed early induction of Gag241-249 specific CD8+ T-cell responses, which did not always result in early selection of viral mutations in the Gag241-249 epitope, suggesting that the order of epitope mutation selection may not be determined only by immunodominance. This SIV infection model using 90-120-Ia-positive macaques would be useful for analysis of the determinants for sequential epitope mutation selection, contributing to our understanding of virus-host CD8+ T-cell interaction in HIV infection.


Subject(s)
HIV Infections , Immunologic Deficiency Syndromes , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class I/genetics , Macaca mulatta , Mutation , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/genetics
6.
J Med Primatol ; 51(1): 56-61, 2022 02.
Article in English | MEDLINE | ID: mdl-34750827

ABSTRACT

Acute-phase neutralizing antibody (NAb) passive immunization in simian immunodeficiency virus (SIV)-infected rhesus macaques (Macaca mulatta) can confer stringent viremia control with T-cell augmentation. In one NAb-infused SIV partial controller, we identify chronic-phase Nef-specific CD107a+ CD4+ T-cell response maintenance, implicating that NAb infusion modulates long-term T-cell responses even within viremic control.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Antibodies, Neutralizing , CD4-Positive T-Lymphocytes , Macaca mulatta , T-Lymphocytes
7.
J Virol ; 94(8)2020 03 31.
Article in English | MEDLINE | ID: mdl-32024773

ABSTRACT

Optimization of immunogen is crucial for induction of effective T-cell responses in the development of a human immunodeficiency virus (HIV) vaccine. Conventional T-cell-based vaccines have been designed to induce virus-specific CD4+ T as well as CD8+ T cells. However, it has been indicated that induction of HIV-specific CD4+ T cells, preferential targets for HIV infection, by vaccination may be detrimental and accelerate viral replication after HIV exposure. In the present study, we present a novel immunogen to selectively induce CD8+ T cells but not CD4+ T cells targeting viral antigens. The immunogen, CaV11, was constructed by tandem connection of overlapping 11-mer peptides spanning simian immunodeficiency virus (SIV) Gag capsid (CA) and Vif. Prime-boost immunization with DNA and Sendai virus (SeV) vectors expressing CaV11 efficiently induced Gag/Vif-specific CD8+ T-cell responses with inefficient Gag/Vif-specific CD4+ T-cell induction in rhesus macaques (n = 6). None of the macaques exhibited the enhancement of acute viral replication after an intravenous high-dose SIV challenge, which was observed in those immunized with DNA and SeV expressing the whole Gag protein in our previous study. Set point viral control postinfection was associated with SeV-specific CD4+ T-cell responses postimmunization, suggesting contribution of SeV-specific helper responses to effective Gag/Vif-specific CD8+ T-cell induction by vaccination. This immunogen design could be a promising method for selective induction of effective anti-HIV CD8+ T-cell responses.IMPORTANCE Induction of effective CD8+ T-cell responses is an important HIV vaccine strategy. Several promising vaccine delivery tools have been developed, and immunogen optimization is now crucial for effective T-cell induction. Conventional immunogens have been designed to induce virus-specific CD4+ T cells as well as CD8+ T cells, but induction of virus-specific CD4+ T cells that are preferential targets for HIV infection could enhance acute HIV proliferation. Here, we designed a novel immunogen to induce HIV-specific CD8+ T cells without HIV-specific CD4+ T-cell induction but with non-HIV antigen-specific CD4+ T-cell help. Our analysis in a macaque AIDS model showed that our immunogen can efficiently elicit effective CD8+ T but not CD4+ T cells targeting viral antigens, resulting in no enhancement of acute viral replication after virus exposure. This immunogen design, also applicable for other currently developed immunogens, could be a promising method for selective induction of effective anti-HIV CD8+ T-cell responses.


Subject(s)
Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Amino Acid Sequence , Animals , Disease Models, Animal , Immunization , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Vaccination , Viral Load , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/immunology , vif Gene Products, Human Immunodeficiency Virus/immunology
8.
Biochem Biophys Res Commun ; 512(2): 213-217, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30878187

ABSTRACT

In human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections, host major histocompatibility complex class I (MHC-I) genotypes have a great impact on viral replication and MHC-I-associated viral genome mutations are selected under CD8+ T-cell pressure. Association of MHC-I genotypes with HIV/SIV control has been investigated at MHC-I allele levels but not fully at haplotype levels. We previously established groups of rhesus macaques sharing individual MHC-I haplotypes. In the present study, we compared viral genome diversification after SIV infection in macaques possessing a protective MHC-I haplotype, 90-010-Id, with those possessing a non-protective MHC-I haplotype, 90-010-Ie. These two MHC-I haplotypes are associated with immunodominant CD8+ T-cell responses targeting similar regions of viral Nef antigen. Analyses of viral genome sequences and antigen-specific T-cell responses showed four and two candidates of viral CD8+ T-cell targets associated with 90-010-Id and 90-010-Ie, respectively, in addition to the Nef targets. In these CD8+ T-cell target regions, higher numbers of mutations were detected at the setpoint after SIV infection in macaques possessing 90-010-Id than those possessing 90-010-Ie. These results indicate higher selective pressure on overall CD8+ T-cell targets associated with the protective MHC-I haplotype, suggesting a pattern of HIV/SIV control by multiple target-specific CD8+ T-cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/virology , Genes, MHC Class I , Macaca mulatta/virology , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/physiology , Animals , CD8-Positive T-Lymphocytes/metabolism , Genes, nef , Genome, Viral , Haplotypes , Macaca mulatta/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Virus Replication
9.
PLoS Pathog ; 13(9): e1006638, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28931083

ABSTRACT

CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced.


Subject(s)
Histocompatibility Antigens Class I/genetics , Immune Evasion/immunology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/pathogenicity , Animals , CD8-Positive T-Lymphocytes/immunology , Immune Evasion/genetics , Macaca mulatta , Virulence
10.
J Virol ; 90(14): 6276-6290, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27122584

ABSTRACT

UNLABELLED: Identifying human immunodeficiency virus type 1 (HIV-1) control mechanisms by neutralizing antibodies (NAbs) is critical for anti-HIV-1 strategies. Recent in vivo studies on animals infected with simian immunodeficiency virus (SIV) and related viruses have shown the efficacy of postinfection NAb passive immunization for viremia reduction, and one suggested mechanism is its occurrence through modulation of cellular immune responses. Here, we describe SIV control in macaques showing biphasic CD8(+) cytotoxic T lymphocyte (CTL) responses following acute-phase NAb passive immunization. Analysis of four SIVmac239-infected rhesus macaque pairs matched with major histocompatibility complex class I haplotypes found that counterparts receiving day 7 anti-SIV polyclonal NAb infusion all suppressed viremia for up to 2 years without accumulating viral CTL escape mutations. In the first phase of primary viremia control attainment, CD8(+) cells had high capacities to suppress SIVs carrying CTL escape mutations. Conversely, in the second, sustained phase of SIV control, CTL responses converged on a pattern of immunodominant CTL preservation. During this sustained phase of viral control, SIV epitope-specific CTLs showed retention of phosphorylated extracellular signal-related kinase (ERK)(hi)/phosphorylated AMP-activated protein kinase (AMPK)(lo) subpopulations, implying their correlation with SIV control. The results suggest that virus-specific CTLs functionally boosted by acute-phase NAbs may drive robust AIDS virus control. IMPORTANCE: In early HIV infection, NAb responses are lacking and CTL responses are insufficient, which leads to viral persistence. Hence, it is important to identify immune responses that can successfully control such HIV replication. Here, we show that monkeys receiving NAb passive immunization in early SIV infection strictly control viral replication for years. Passive infusion of NAbs with CTL cross-priming capacity resulted in induction of functionally boosted early CTL responses showing enhanced suppression of CTL escape mutant virus replication. Accordingly, the NAb-infused animals did not show accumulation of viral CTL escape mutations during sustained SIV control, and immunodominant CTL responses were preserved. This early functional augmentation of CTLs by NAbs provides key insights into the design of lasting and viral escape mutation-free protective immunity against HIV-1 infection.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Viremia/prevention & control , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Immunization, Passive , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Viremia/immunology , Viremia/virology , Virus Replication
11.
PLoS Pathog ; 11(11): e1005247, 2015.
Article in English | MEDLINE | ID: mdl-26536034

ABSTRACT

Control of HIV replication is a rare immunological event, providing clues to understand the viral control mechanism. CD8+ T-cell responses are crucial for virus control, but it is unclear whether lasting HIV containment can be achieved after establishment of infection. Here, we describe lasting SIV containment in a macaque AIDS model. Analysis of ten rhesus macaques that controlled viremia for 2 years post-infection found accumulation of proviral gag and nef CD8+ T-cell escape mutations in four of them. These four controllers mounted CD8+ T cells targeting Gag, Nef, and other viral proteins at 4 months, suggesting that broadening of CD8+ T-cell targets can be an indicator of the beginning of viral control failure. The remaining six aviremic SIV controllers, however, harbored proviruses without mutations and showed no or little broadening of their CD8+ T-cell responses in the chronic phase. Indeed, three of the latter six exhibiting no change in CD8+ T-cell targets showed gradual decreases in SIV-specific CD8+ T-cell frequencies, implying a concomitant reduction in viral replication. Thus, stability of the breadth of virus-specific CD8+ T-cell responses may represent a status of lasting HIV containment by CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Virus Replication , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/genetics , Viral Load/methods , Viremia/immunology
12.
J Virol ; 88(24): 14232-40, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25275131

ABSTRACT

UNLABELLED: CD4(+) T-cell responses are crucial for effective antibody and CD8(+) T-cell induction following virus infection. However, virus-specific CD4(+) T cells can be preferential targets for human immunodeficiency virus (HIV) infection. HIV-specific CD4(+) T-cell induction by vaccination may thus result in enhancement of virus replication following infection. In the present study, we show that vaccine-elicited CD4(+) T cells expressing CD107a are relatively resistant to depletion in a macaque AIDS model. Comparison of virus-specific CD107a, macrophage inflammatory protein-1ß, gamma interferon, tumor necrosis factor alpha, and interleukin-2 responses in CD4(+) T cells of vaccinated macaques prechallenge and 1 week postchallenge showed a significant reduction in the CD107a(-) but not the CD107a(+) subset after virus exposure. Those vaccinees that failed to control viremia showed a more marked reduction and exhibited significantly higher viral loads at week 1 than unvaccinated animals. Our results indicate that vaccine-induced CD107a(-) CD4(+) T cells are depleted following virus infection, suggesting a rationale for avoiding virus-specific CD107a(-) CD4(+) T-cell induction in HIV vaccine design. IMPORTANCE: Induction of effective antibody and/or CD8(+) T-cell responses is a principal vaccine strategy against human immunodeficiency virus (HIV) infection. CD4(+) T-cell responses are crucial for effective antibody and CD8(+) T-cell induction. However, virus-specific CD4(+) T cells can be preferential targets for HIV infection. Here, we show that vaccine-induced virus-specific CD107a(-) CD4(+) T cells are largely depleted following infection in a macaque AIDS model. While CD4(+) T-cell responses are important in viral control, our results indicate that virus-specific CD107a(-) CD4(+) T-cell induction by vaccination may not lead to efficient CD4(+) T-cell responses following infection but rather be detrimental and accelerate viral replication in the acute phase. This suggests that HIV vaccine design should avoid virus-specific CD107a(-) CD4(+) T-cell induction. Conversely, this study found that vaccine-induced CD107a(+) CD4(+) T cells are relatively resistant to depletion following virus challenge, implying that induction of these cells may be an alternative approach toward HIV control.


Subject(s)
AIDS Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV/growth & development , Lymphocyte Subsets/immunology , Lymphocyte Subsets/virology , Lysosomal-Associated Membrane Protein 1/analysis , AIDS Vaccines/administration & dosage , Animals , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/chemistry , Lymphocyte Subsets/chemistry , Macaca mulatta
13.
J Virol ; 88(1): 425-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24155398

ABSTRACT

For development of an effective T cell-based AIDS vaccine, it is critical to define the antigens that elicit the most potent responses. Recent studies have suggested that Gag-specific and possibly Vif/Nef-specific CD8(+) T cells can be important in control of the AIDS virus. Here, we tested whether induction of these CD8(+) T cells by prophylactic vaccination can result in control of simian immunodeficiency virus (SIV) replication in Burmese rhesus macaques sharing the major histocompatibility complex class I (MHC-I) haplotype 90-010-Ie associated with dominant Nef-specific CD8(+) T-cell responses. In the first group vaccinated with Gag-expressing vectors (n = 5 animals), three animals that showed efficient Gag-specific CD8(+) T-cell responses in the acute phase postchallenge controlled SIV replication. In the second group vaccinated with Vif- and Nef-expressing vectors (n = 6 animals), three animals that elicited Vif-specific CD8(+) T-cell responses in the acute phase showed SIV control, whereas the remaining three with Nef-specific but not Vif-specific CD8(+) T-cell responses failed to control SIV replication. Analysis of 18 animals, consisting of seven unvaccinated noncontrollers and the 11 vaccinees described above, revealed that the sum of Gag- and Vif-specific CD8(+) T-cell frequencies in the acute phase was inversely correlated with plasma viral loads in the chronic phase. Our results suggest that replication of the AIDS virus can be controlled by vaccine-induced subdominant Gag/Vif epitope-specific CD8(+) T cells, providing a rationale for the induction of Gag- and/or Vif-specific CD8(+) T-cell responses by prophylactic AIDS vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Gene Products, gag/immunology , Gene Products, vif/immunology , Simian Immunodeficiency Virus/physiology , Viral Vaccines/immunology , Virus Replication/immunology , Animals , Macaca mulatta , Viral Load
14.
Biochem Biophys Res Commun ; 450(2): 942-7, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24971540

ABSTRACT

Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Gene Products, nef/metabolism , Histocompatibility Antigens Class I/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte , Gene Products, nef/genetics , Gene Products, nef/immunology , Genes, MHC Class I , Haplotypes , Immune Evasion , Macaca mulatta , Mutation , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Viral Load
15.
J Virol ; 86(16): 8602-13, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22674973

ABSTRACT

Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious disease of pigs. There are numerous CSFV strains that differ in virulence, resulting in clinical disease with different degrees of severity. Low-virulent and moderately virulent isolates cause a mild and often chronic disease, while highly virulent isolates cause an acute and mostly lethal hemorrhagic fever. The live attenuated vaccine strain GPE(-) was produced by multiple passages of the virulent ALD strain in cells of swine, bovine, and guinea pig origin. With the aim of identifying the determinants responsible for the attenuation, the GPE(-) vaccine virus was readapted to pigs by serial passages of infected tonsil homogenates until prolonged viremia and typical signs of CSF were observed. The GPE(-)/P-11 virus isolated from the tonsils after the 11th passage in vivo had acquired 3 amino acid substitutions in E2 (T830A) and NS4B (V2475A and A2563V) compared with the virus before passages. Experimental infection of pigs with the mutants reconstructed by reverse genetics confirmed that these amino acid substitutions were responsible for the acquisition of pathogenicity. Studies in vitro indicated that the substitution in E2 influenced virus spreading and that the changes in NS4B enhanced the viral RNA replication. In conclusion, the present study identified residues in E2 and NS4B of CSFV that can act synergistically to influence virus replication efficiency in vitro and pathogenicity in pigs.


Subject(s)
Classical Swine Fever Virus/genetics , Classical Swine Fever Virus/pathogenicity , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Virulence Factors/genetics , Adaptation, Biological , Amino Acid Substitution , Animals , Cattle , Cell Line , Classical Swine Fever/pathology , Classical Swine Fever/virology , Classical Swine Fever Virus/growth & development , Disease Models, Animal , Guinea Pigs , Palatine Tonsil/virology , Serial Passage , Swine , Vaccines, Attenuated/genetics , Virulence
16.
J Virol ; 86(12): 6481-90, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22491464

ABSTRACT

Nonhuman primate AIDS models are essential for the analysis of AIDS pathogenesis and the evaluation of vaccine efficacy. Multiple studies on human immunodeficiency virus and simian immunodeficiency virus (SIV) infection have indicated the association of major histocompatibility complex class I (MHC-I) genotypes with rapid or slow AIDS progression. The accumulation of macaque groups that share not only a single MHC-I allele but also an MHC-I haplotype consisting of multiple polymorphic MHC-I loci would greatly contribute to the progress of AIDS research. Here, we investigated SIVmac239 infections in four groups of Burmese rhesus macaques sharing individual MHC-I haplotypes, referred to as A, E, B, and J. Out of 20 macaques belonging to A(+) (n = 6), E(+) (n = 6), B(+) (n = 4), and J(+) (n = 4) groups, 18 showed persistent viremia. Fifteen of them developed AIDS in 0.5 to 4 years, with the remaining three at 1 or 2 years under observation. A(+) animals, including two controllers, showed slower disease progression, whereas J(+) animals exhibited rapid progression. E(+) and B(+) animals showed intermediate plasma viral loads and survival periods. Gag-specific CD8(+) T-cell responses were efficiently induced in A(+) animals, while Nef-specific CD8(+) T-cell responses were in A(+), E(+), and B(+) animals. Multiple comparisons among these groups revealed significant differences in survival periods, peripheral CD4(+) T-cell decline, and SIV-specific CD4(+) T-cell polyfunctionality in the chronic phase. This study indicates the association of MHC-I haplotypes with AIDS progression and presents an AIDS model facilitating the analysis of virus-host immune interaction.


Subject(s)
HIV Infections/genetics , HIV Infections/pathology , Histocompatibility Antigens Class I/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/physiology , Alleles , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Disease Models, Animal , Disease Progression , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Haplotypes , Histocompatibility Antigens Class I/immunology , Humans , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology
17.
Microbiol Spectr ; 11(4): e0151823, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37367230

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) induces chronic asymptomatic latent infection with a substantial proviral load but without significant viral replication in vivo. Cumulative studies have indicated involvement of CD8-positive (CD8+) cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. However, whether HTLV-1 expression from latently infected cells in vivo occurs in the absence of CD8+ cells remains unclear. Here, we examined the impact of CD8+ cell depletion by monoclonal anti-CD8 antibody administration on proviral load in HTLV-1-infected cynomolgus macaques. Five cynomolgus macaques were infected with HTLV-1 by inoculation with HTLV-1-producing cells. Administration of monoclonal anti-CD8 antibody in the chronic phase resulted in complete depletion of peripheral CD8+ T cells for approximately 2 months. All five macaques showed an increase in proviral load following CD8+ cell depletion, which peaked just before the reappearance of peripheral CD8+ T cells. Tax-specific CD8+ T-cell responses were detected in these recovered CD8+ T cells. Importantly, anti-HTLV-1 antibodies also increased after CD8+ cell depletion, indicating HTLV-1 antigen expression. These results provide evidence indicating that HTLV-1 can proliferate from the latent phase in the absence of CD8+ cells and suggest that CD8+ cells are responsible for the control of HTLV-1 replication. IMPORTANCE HTLV-1 can cause serious diseases such as adult T-cell leukemia (ATL) in humans after chronic asymptomatic latent infection with substantial proviral load. Proviruses are detectable in peripheral lymphocytes in HTLV-1 carriers, and the association of a higher proviral load with a higher risk of disease progression has been observed. However, neither substantial viral structural protein expression nor viral replication was detectable in vivo. Cumulative studies have indicated involvement of CD8+ cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. In the present study, we showed that CD8+ cell depletion by monoclonal anti-CD8 antibody administration results in HTLV-1 expression and an increase in proviral load in HTLV-1-infected cynomolgus macaques. Our results indicate that HTLV-1 can proliferate in the absence of CD8+ cells, suggesting that CD8+ cells are responsible for the control of HTLV-1 replication. This study provides insights into the mechanism of virus-host immune interaction in latent HTLV-1 infection.


Subject(s)
Human T-lymphotropic virus 1 , Latent Infection , Adult , Animals , Humans , CD8-Positive T-Lymphocytes , Human T-lymphotropic virus 1/physiology , Proviruses , Macaca fascicularis , Cell Proliferation , Viral Load
18.
Jpn J Vet Res ; 60(2-3): 85-94, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23094583

ABSTRACT

An indirect enzyme-linked immunosorbent assay (ELISA) was developed for a screening test to detect antibodies against classical swine fever virus (CSFV). Viral glycoproteins, which were purified from swine kidney cells infected with CSFV ALD/A76 strain by the immunoaffinity purification using monoclonal antibody against E2 protein, were adsorbed on a microtiter plate as the antigen for the antibody detection. Each antibody titer of serum sample was expressed as a sample per positive value calculated with optical absorbance of each sample and that of a positive control. The advantage of this ELISA is its higher sensitivity: most sera containing more than 4 neutralization titers were determined to be positive. This ELISA is unable to discriminate between antibodies against CSFV and those against other ruminant pestiviruses, therefore positive sera in this ELISA should be evaluated by a cross-neutralization test using CSFV, bovine viral diarrhea virus, and border disease virus. Taken together, the indirect ELISA developed in this study is useful screening tool to detect antibodies against CSFV for the large-scale monitoring of classical swine fever.


Subject(s)
Antibodies, Viral/blood , Classical Swine Fever Virus/isolation & purification , Classical Swine Fever/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Animals , Border Disease/blood , Border Disease/diagnosis , Border Disease/immunology , Border disease virus/immunology , Bovine Virus Diarrhea-Mucosal Disease/blood , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Bovine Virus Diarrhea-Mucosal Disease/immunology , Cattle , Cell Line , Classical Swine Fever/blood , Classical Swine Fever/immunology , Classical Swine Fever Virus/genetics , Classical Swine Fever Virus/immunology , Diarrhea Viruses, Bovine Viral/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Neutralization Tests/veterinary , Sensitivity and Specificity , Swine , Viral Envelope Proteins/analysis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
19.
AIDS ; 36(12): 1629-1641, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35848590

ABSTRACT

OBJECTIVE: In HIV type 1 (HIV-1) infection, virus-specific B-cell and neutralizing antibody (NAb) responses are impaired but exert selective pressure on target viral Envelope (Env) resulting in prominent sequence diversification among geographical areas. The basal induction patterns of HIV Env-specific B cells and their interaction with HIV Env awaits clarification. DESIGN: We investigated the relationship of Env polymorphisms and Env-specific B-cell responses in treatment-naive HIV-1 CRF01_AE-infected Vietnamese. METHODS: Samples of 43 HIV-1 CRF01_AE infection-identified individuals were divided into acute-phase ( n  = 12) and chronic-phase ( n  = 31) by combined criteria of serological recent-infection assay and clinical parameters. We quantified subcloning-based polymorphic residue site numbers in plasma-derived Env variable region 1-5 (V1-V5)-coding regions within each individual, designating their summation within each region as variant index. Peripheral blood Env gp 140-specific B-cell responses and plasma neutralizing activity of Env pseudoviruses were examined to analyze their relationship with variant index. RESULTS: HIV-1 CRF01_AE Env gp140-specific total B-cell and plasma cell (CD19 + IgD - CD27 + CD38 + CD138 + ) responses were determined. In chronic-phase samples, significant correlation of variant index in all Env V1-V5 regions with Env-specific plasma cell responses was shown, and V1-V5 total variant index correlated stronger with Env-specific plasma cell as compared with total Env-specific B-cell responses. Env V5 variant index was significantly higher in chronic-phase cross-neutralizers of V5-polymorphic/VRC01-insensitive CRF01_AE Env. CONCLUSION: Results revealed the association between circulating Env-specific plasma cell responses and Env polymorphisms, implicating selective pressure on Env by plasma cell-derived antibodies and conversely suggests that Env-specific B-cell induction alone is insufficient for exerting Env selective pressure in HIV infection.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Neutralizing , Cell Differentiation , HIV Antibodies , HIV-1/genetics , Humans
20.
Cell Rep Med ; 3(2): 100520, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233545

ABSTRACT

Effective vaccines are essential for the control of the coronavirus disease 2019 (COVID-19) pandemic. Currently developed vaccines inducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-antigen-specific neutralizing antibodies (NAbs) are effective, but the appearance of NAb-resistant S variant viruses is of great concern. A vaccine inducing S-independent or NAb-independent SARS-CoV-2 control may contribute to containment of these variants. Here, we investigate the efficacy of an intranasal vaccine expressing viral non-S antigens against intranasal SARS-CoV-2 challenge in cynomolgus macaques. Seven vaccinated macaques exhibit significantly reduced viral load in nasopharyngeal swabs on day 2 post-challenge compared with nine unvaccinated controls. The viral control in the absence of SARS-CoV-2-specific NAbs is significantly correlated with vaccine-induced, viral-antigen-specific CD8+ T cell responses. Our results indicate that CD8+ T cell induction by intranasal vaccination can result in NAb-independent control of SARS-CoV-2 infection, highlighting a potential of vaccine-induced CD8+ T cell responses to contribute to COVID-19 containment.


Subject(s)
Administration, Intranasal/methods , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Animals , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Coronavirus Envelope Proteins/immunology , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Disease Models, Animal , Female , Macaca fascicularis , Male , Pandemics/prevention & control , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , Vero Cells , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL