Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2314450121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621133

ABSTRACT

Proteinaceous brain inclusions, neuroinflammation, and vascular dysfunction are common pathologies in Alzheimer's disease (AD). Vascular deficits include a compromised blood-brain barrier, which can lead to extravasation of blood proteins like fibrinogen into the brain. Fibrinogen's interaction with the amyloid-beta (Aß) peptide is known to worsen thrombotic and cerebrovascular pathways in AD. Lecanemab, an FDA-approved antibody therapy for AD, clears Aß plaque from the brain and slows cognitive decline. Here, we show that lecanemab blocks fibrinogen's binding to Aß protofibrils, preventing Aß/fibrinogen-mediated delayed fibrinolysis and clot abnormalities in vitro and in human plasma. Additionally, we show that lecanemab dissociates the Aß/fibrinogen complex and prevents fibrinogen from exacerbating Aß-induced synaptotoxicity in mouse organotypic hippocampal cultures. These findings reveal a possible protective mechanism by which lecanemab may slow disease progression in AD.


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal, Humanized , Thrombosis , Mice , Humans , Animals , Fibrinogen/metabolism , Microphysiological Systems , Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism
2.
Blood ; 143(7): 570-571, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358851
3.
bioRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38293058

ABSTRACT

Proteinaceous brain inclusions, neuroinflammation, and vascular dysfunction are common pathologies in Alzheimer's disease (AD). Vascular deficits include a compromised blood-brain barrier, which can lead to extravasation of blood proteins like fibrinogen into the brain. Fibrinogen's interaction with the amyloid-beta (Aß) peptide is known to worsen thrombotic and cerebrovascular pathways in AD. Lecanemab, an FDA-approved antibody therapy for AD, shows promising results in facilitating reduction of Aß from the brain and slowing cognitive decline. Here we show that lecanemab blocks fibrinogen's binding to Aß protofibrils, normalizing Aß/fibrinogen-mediated delayed fibrinolysis and clot abnormalities in vitro and in human plasma. Additionally, we show that lecanemab dissociates the Aß/fibrinogen complex and prevents fibrinogen from exacerbating Aß-induced synaptotoxicity in mouse organotypic hippocampal cultures. These findings reveal a possible protective mechanism by which lecanemab may slow disease progression in AD.

SELECTION OF CITATIONS
SEARCH DETAIL