ABSTRACT
SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.
Subject(s)
COVID-19/genetics , Disease Resistance/genetics , Genetic Predisposition to Disease , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/virology , Genetic Heterogeneity , Host-Pathogen Interactions , Humans , Phenotype , Protective Factors , Risk Assessment , Risk Factors , SARS-CoV-2/immunologyABSTRACT
Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.
Subject(s)
Biomarkers , Friedreich Ataxia , MicroRNAs , Humans , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Friedreich Ataxia/blood , MicroRNAs/genetics , MicroRNAs/blood , Male , Biomarkers/blood , Prognosis , Female , Adult , RNA-Seq , Adolescent , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Child , Young Adult , Middle Aged , Child, Preschool , ROC Curve , Case-Control StudiesABSTRACT
Frataxin (FXN) deficiency is responsible for Friedreich's ataxia (FRDA) in which, besides the characteristic features of spinocerebellar ataxia, two thirds of patients develop hypertrophic cardiomyopathy that often progresses to heart failure and premature death. Different mechanisms might underlie FRDA pathogenesis. Among them, the role of miRNAs deserves investigations. We carried out an miRNA PCR-array analysis of plasma samples of early-, intermediate- and late-onset FRDA groups, defining a set of 30 differentially expressed miRNAs. Hsa-miR223-3p is the only miRNA shared between the three patient groups and appears upregulated in all of them. The up-regulation of hsa-miR223-3p was further validated in all enrolled patients (n = 37, Fc = +2.3; P < 0.0001). Using a receiver operating characteristic curve analysis, we quantified the predictive value of circulating hsa-miR223-3p for FRDA, obtaining an area under the ROC curve value of 0.835 (P < 0.0001) for all patients. Interestingly, we found a significant positive correlation between hsa-miR223-3p expression and cardiac parameters in typical FRDA patients (onset < 25 years). Moreover, a significant negative correlation between hsa-miR223-3p expression and HAX-1 (HCLS1-associated protein X-1) at mRNA and protein level was observed in all FRDA patients. In silico analyses suggested HAX-1 as a target gene of hsa-miR223-3p. Accordingly, we report that HAX-1 is negatively regulated by hsa-miR223-3p in cardiomyocytes (AC16) and neurons (SH-SY5Y), which are critically affected cell types in FRDA. This study describes for the first time the association between hsa-miR223-3p and HAX-1 expression in FRDA, thus supporting a potential role of this microRNA as non-invasive epigenetic biomarker for FRDA.
Subject(s)
Adaptor Proteins, Signal Transducing , Friedreich Ataxia , MicroRNAs , Neuroblastoma , Adaptor Proteins, Signal Transducing/genetics , Friedreich Ataxia/pathology , Humans , MicroRNAs/blood , Myocytes, Cardiac/metabolism , Neuroblastoma/metabolism , RNA, Messenger/geneticsABSTRACT
Three and a half years after the pandemic outbreak, now that WHO has formally declared that the emergency is over, COVID-19 is still a significant global issue. Here, we focus on recent developments in genetic and genomic research on COVID-19, and we give an outlook on state-of-the-art therapeutical approaches, as the pandemic is gradually transitioning to an endemic situation. The sequencing and characterization of rare alleles in different populations has made it possible to identify numerous genes that affect either susceptibility to COVID-19 or the severity of the disease. These findings provide a beginning to new avenues and pan-ethnic therapeutic approaches, as well as to potential genetic screening protocols. The causative virus, SARS-CoV-2, is still in the spotlight, but novel threatening virus could appear anywhere at any time. Therefore, continued vigilance and further research is warranted. We also note emphatically that to prevent future pandemics and other world-wide health crises, it is imperative to capitalize on what we have learnt from COVID-19: specifically, regarding its origins, the world's response, and insufficient preparedness. This requires unprecedented international collaboration and timely data sharing for the coordination of effective response and the rapid implementation of containment measures.
Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2/genetics , Evolution, Molecular , Genome-Wide Association Study , GenomicsABSTRACT
COVID-19, which is caused by the SARS-CoV-2, has ravaged the world for the past 2 years. Here, we review the current state of research into the disease with focus on its history, human genetics and genomics and the transition from the pandemic to the endemic phase. We are particularly concerned by the lack of solid information from the initial phases of the pandemic that highlighted the necessity for better preparation to face similar future threats. On the other hand, we are gratified by the progress into human genetic susceptibility investigations and we believe now is the time to explore the transition from the pandemic to the endemic phase. The latter will require worldwide vigilance and cooperation, especially in emerging countries. In the transition to the endemic phase, vaccination rates have lagged and developed countries should assist, as warranted, in bolstering vaccination rates worldwide. We also discuss the current status of vaccines and the outlook for COVID-19.
Subject(s)
COVID-19 , Influenza, Human , Humans , Pandemics/prevention & control , SARS-CoV-2ABSTRACT
Baraitser-Winter syndrome (BRWS) is a rare autosomal dominant disease (AD) caused by heterozygous variants in ACTB (BRWS1) or ACTG1 (BRWS2) genes. BRWS features developmental delay/intellectual disability of variable degree and craniofacial dysmorphisms. Brain abnormalities (especially pachygyria), microcephaly, epilepsy, as well as hearing impairment, cardiovascular and genitourinary abnormalities may be present. We report on a 4-year-old female, who was addressed to our institution because of psychomotor delay associated with microcephaly and dysmorphic features, short stature, mild bilateral sensorineural hearing loss, mild cardiac septal hypertrophy, and abdominal swelling. Clinical exome sequencing detected a c.617G>A p.(Arg206Gln) de novo variant in ACTG1 gene. Such variant has been previously reported in association with a form of AD nonsyndromic sensorineural progressive hearing loss and we classified it as likely pathogenic according to ACMG/AMP criteria, despite our patient's phenotype only partially overlapped BWRS2. Our finding supports the extreme variability of the ACTG1-related disorders, ranging from classical BRWS2 to nuanced clinical expressions not fitting the original description, and occasionally featuring previously undescribed clinical findings.
Subject(s)
Abnormalities, Multiple , Epilepsy , Intellectual Disability , Lissencephaly , Microcephaly , Nervous System Malformations , Female , Humans , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Actins/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Mutation, Missense , Phenotype , Child, PreschoolABSTRACT
BACKGROUND AND AIMS: Type 2 diabetes (T2D) hyperglycaemia alters basal autophagy. Since autophagy is an essential cellular process, our aim was to investigate the ATG5 (autophagy-related 5) gene expression level and genetic variants in a cohort of diabetic patients, characterized for the presence of microangiopathic complications. METHODS AND RESULTS: the expression levels of ATG5 were evaluated in PBMCs from 48 T2D patients with an extensive evaluation for microangiopathic complications. Our analyses revealed a significant lower expression of ATG5 in T2D patients with retinopathy compared to those without retinopathy. We also highlighted a significant lower expression of ATG5 in T2D patients with early-cardiovascular autonomic neuropathy compared to those without it, after correction for sex, age, body mass index and levels of hemoglobin A1c. CONCLUSION: our results highlight that dysregulation in the autophagy process could be involved in the development of severe microangiopathic complications.
Subject(s)
Diabetes Mellitus, Type 2 , Retinal Diseases , Vascular Diseases , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Glycated Hemoglobin , Autophagy/genetics , Autophagy-Related Protein 5/geneticsABSTRACT
Coronary heart disease (CHD), one of the leading causes of disability and death worldwide, is a multifactorial disease whose early diagnosis is demanding. Thus, biomarkers predicting the occurrence of this pathology are of great importance from a clinical and therapeutic standpoint. By means of a pilot study on peripheral blood cells (PBMCs) of subjects with no coronary lesions (CTR; n = 2) and patients with stable CAD (CAD; n = 2), we revealed 61 differentially methylated regions (DMRs) (18 promoter regions, 24 genes and 19 CpG islands) and 14.997 differentially methylated single CpG sites (DMCs) in CAD patients. MiRNA-seq results displayed a peculiar miRNAs profile in CAD patients with 18 upregulated and 32 downregulated miRNAs (FC ≥ ±1.5, p ≤ 0.05). An integrated analysis of genome-wide DNA methylation and miRNA-seq results indicated a significant downregulation of hsa-miR-200c-3p (FCCAD = −2.97, p ≤ 0.05) associated to the hypermethylation of two sites (genomic coordinates: chr12:7073122-7073122 and chr12:7072599-7072599) located intragenic to the miR-200c/141 genomic locus (encoding hsa-miR-200c-3p) (p-value = 0.009) in CAD patients. We extended the hsa-miR-200c-3p expression study in a larger cohort (CAD = 72, CTR = 24), confirming its reduced expression level in CAD patients (FCCAD = −2; p = 0.02). However, when we analyzed the methylation status of the two CpG sites in the same cohort, we failed to identify significant differences. A ROC curve analysis showed good performance of hsa-miR-200c-3p expression level (AUC = 0.65; p = 0.02) in distinguishing CAD from CTR. Moreover, we found a significant positive correlation between hsa-miR-200c-3p expression and creatinine clearance (R2 = 0.212, p < 0.005, Pearson r = 0.461) in CAD patients. Finally, a phenotypic correlation performed in the CAD group revealed lower hsa-miR-200c-3p expression levels in CAD patients affected by dyslipidemia (+DLP, n = 58) (p < 0.01). These results indicate hsa-miR-200c-3p as potential epi-biomarker for the diagnosis and clinical progression of CAD and highlight the importance of deeper studies on the expression of this miRNA to understand its functional role in coronary artery disease development.
Subject(s)
Coronary Artery Disease , Dyslipidemias , MicroRNAs , Humans , Coronary Artery Disease/genetics , Down-Regulation/genetics , Pilot Projects , Gene Expression Profiling/methods , MicroRNAs/metabolism , BiomarkersABSTRACT
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disease caused by a CTG repeat expansion in the 3'-untranslated region (UTR) of DMPK gene. DM1 alleles containing non-CTG variant repeats (VRs) have been described, with uncertain molecular and clinical consequences. The expanded trinucleotide array is flanked by two CpG islands, and the presence of VRs could confer an additional level of epigenetic variability. This study aims to investigate the association between VR-containing DMPK alleles, parental inheritance and methylation pattern of the DM1 locus. The DM1 mutation has been characterized in 20 patients using a combination of SR-PCR, TP-PCR, modified TP-PCR and LR-PCR. Non-CTG motifs have been confirmed by Sanger sequencing. The methylation pattern of the DM1 locus was determined by bisulfite pyrosequencing. We characterized 7 patients with VRs within the CTG tract at 5' end and 13 patients carrying non-CTG sequences at 3' end of the DM1 expansion. DMPK alleles with VRs at 5' end or 3' end were invariably unmethylated upstream of the CTG expansion. Interestingly, DM1 patients with VRs at the 3' end showed higher methylation levels in the downstream island of the CTG repeat tract, preferentially when the disease allele was maternally inherited. Our results suggest a potential correlation between VRs, parental origin of the mutation and methylation pattern of the DMPK expanded alleles. A differential CpG methylation status could play a role in the phenotypic variability of DM1 patients, representing a potentially useful diagnostic tool.
Subject(s)
Myotonic Dystrophy , Humans , Myotonic Dystrophy/genetics , Alleles , Myotonin-Protein Kinase/genetics , Trinucleotide Repeat Expansion , CpG IslandsABSTRACT
Variants in desmoplakin gene (DSP MIM *125647) have been usually associated with Arrhythmogenic Cardiomyopathy (ACM), or Dilated Cardiomyopathy (DCM) inherited in an autosomal dominant manner. A cohort of 18 probands, characterized as heterozygotes for DSP variants by a target Next Generation Sequencing (NGS) cardiomyopathy panel, was analyzed. Cardiological, genetic data, and imaging features were retrospectively collected. A total of 16 DSP heterozygous pathogenic or likely pathogenic variants were identified, 75% (n = 12) truncating variants, n = 2 missense variants, n = 1 splicing variant, and n = 1 duplication variant. The mean age at diagnosis was 40.61 years (IQR 31-47.25), 61% of patients being asymptomatic (n = 11, New York Heart Association (NYHA) class I) and 39% mildly symptomatic (n = 7, NYHA class II). Notably, 39% of patients (n = 7) presented with a clinical history of presumed myocarditis episodes, characterized by chest pain, myocardial enzyme release, 12-lead electrocardiogram abnormalities with normal coronary arteries, which were recurrent in 57% of cases (n = 4). About half of the patients (55%, n = 10) presented with a varied degree of left ventricular enlargement (LVE), four showing biventricular involvement. Eleven patients (61%) underwent implantable cardioverter defibrillator (ICD) implantation, with a mean age of 46.81 years (IQR 36.00-64.00). Cardiac magnetic resonance imaging (CMRI) identified in all 18 patients a delayed enhancement (DE) area consistent with left ventricular (LV) myocardial fibrosis, with a larger localization and extent in patients presenting with recurrent episodes of myocardial injury. These clinical and genetic data confirm that DSP-related cardiomyopathy may represent a distinct clinical entity characterized by a high arrhythmic burden, variable degrees of LVE, Late Gadolinium Enhancement (LGE) with subepicardial distribution and episodes of myocarditis-like picture.
Subject(s)
Cardiomyopathies , Myocarditis , Adult , Humans , Middle Aged , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Contrast Media , Gadolinium , Hypertrophy, Left Ventricular , Retrospective StudiesABSTRACT
In the recent years the rapid scientific innovation in the evaluation of the individual's genome have allowed the identification of variants associated with the onset, treatment and prognosis of various pathologies including cancer, and with a potential impact in the assessment of therapy responses. Despite the analysis and interpretation of genomic information is considered incomplete, in many cases the identification of specific genomic profile has allowed the stratification of subgroups of patients characterized by a better response to drug therapies. Individual genome analysis has changed profoundly the diagnostic and therapeutic approach of breast cancer in the last 15 years by identifying selective molecular lesions that drive the development of neoplasms, showing that each tumor has its own genomic signature, with some specific features and some features common to several sub-types. Several personalized therapies have been (and still are being) developed showing a remarkable efficacy in the treatment of breast cancer.
Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Genomics , Mutation , Neoplasm Proteins/antagonists & inhibitors , Precision Medicine , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Neoplasm Proteins/genetics , PrognosisABSTRACT
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the novel coronavirus responsible for worldwide coronavirus disease (COVID-19). We previously observed that Angiotensin-converting enzyme 2 (ACE2) and Dipeptidyl peptidase-4 (DPP4) are significantly overexpressed in naso-oropharyngeal swabs (NPS) of COVID-19 patients, suggesting their putative functional role in the disease progression. ACE2 and DPP4 overexpression in COVID-19 patients may be associated to epigenetic mechanism, such as miRNA differential expression. We investigated if hsa-let7b-5p, reported to target both ACE2 and DPP4 transcripts, could be involved in the regulation of these genes. We verified that the inhibition and overexpression of hsa-let7b-5p matched to a modulation of both ACE2 and DPP4 levels. Then, we observed a statistically significant downregulation (FC = -1.5; p < 0.05) of hsa-let7b-5p in the same COVID-19 and control samples of our previous study. This is the first study that shows hsa-let7b-5p low expression in naso-oropharyngeal swabs of COVID-19 patients and demonstrates a functional role of this miR in regulating ACE2 and DPP4 levels. These data suggest the involvement of hsa-let7b-5p in the regulation of genes necessary for SARS-CoV-2 infections and its putative role as a therapeutic target for COVID-19.
Subject(s)
COVID-19 , MicroRNAs , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2/geneticsABSTRACT
Frataxin deficiency, responsible for Friedreich's ataxia (FRDA), is crucial for cell survival since it critically affects viability of neurons, pancreatic beta cells and cardiomyocytes. In FRDA, the heart is frequently affected with typical manifestation of hypertrophic cardiomyopathy, which can progress to heart failure and cause premature death. A microarray analysis performed on FRDA patient's lymphoblastoid cells stably reconstituted with frataxin, indicated HS-1-associated protein X-1 (HAX-1) as the most significantly upregulated transcript (FC = +2, P < 0.0006). quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot analysis performed on (I) HEK293 stably transfected with empty vector compared to wild-type frataxin and (II) lymphoblasts from FRDA patients show that low frataxin mRNA and protein expression correspond to reduced levels of HAX-1. Frataxin overexpression and silencing were also performed in the AC16 human cardiomyocyte cell line. HAX-1 protein levels are indeed regulated through frataxin modulation. Moreover, correlation between frataxin and HAX-1 was further evaluated in peripheral blood mononuclear cells (PBMCs) from FRDA patients and from non-related healthy controls. A regression model for frataxin which included HAX-1, group membership and group* HAX-1 interaction revealed that frataxin and HAX-1 are associated both at mRNA and protein levels. Additionally, a linked expression of FXN, HAX-1 and antioxidant defence proteins MnSOD and Nrf2 was observed both in PBMCs and AC16 cardiomyocytes. Our results suggest that HAX-1 could be considered as a potential biomarker of cardiac disease in FRDA and the evaluation of its expression might provide insights into its pathogenesis as well as improving risk stratification strategies.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cardiomyopathy, Hypertrophic/pathology , Friedreich Ataxia/complications , Gene Expression Regulation , Heart Failure/pathology , Iron-Binding Proteins/metabolism , Myocytes, Cardiac/pathology , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/metabolism , Female , Heart Failure/etiology , Heart Failure/metabolism , Humans , Iron-Binding Proteins/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Myocytes, Cardiac/metabolism , Young Adult , FrataxinABSTRACT
Flowchart showing the molecular approach used to decipher the non-canonical splicing mutations.
Subject(s)
Spastic Paraplegia, Hereditary , Humans , Mutation , Paraplegia/genetics , Spastic Paraplegia, Hereditary/genetics , Spastin/geneticsABSTRACT
COVID-19 has engulfed the world and it will accompany us all for some time to come. Here, we review the current state at the milestone of 1 year into the pandemic, as declared by the WHO (World Health Organization). We review several aspects of the on-going pandemic, focusing first on two major topics: viral variants and the human genetic susceptibility to disease severity. We then consider recent and exciting new developments in therapeutics, such as monoclonal antibodies, and in prevention strategies, such as vaccines. We also briefly discuss how advances in basic science and in biotechnology, under the threat of a worldwide emergency, have accelerated to an unprecedented degree of the transition from the laboratory to clinical applications. While every day we acquire more and more tools to deal with the on-going pandemic, we are aware that the path will be arduous and it will require all of us being community-minded. In this respect, we lament past delays in timely full investigations, and we call for bypassing local politics in the interest of humankind on all continents.
Subject(s)
COVID-19/genetics , COVID-19/virology , Pandemics , Antibodies, Monoclonal/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Genetic Predisposition to Disease , Health Policy , Humans , Population Health , SARS-CoV-2 , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , mRNA VaccinesABSTRACT
BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and the second leading cause of cancer-related deaths among women in Africa after cervical cancer. Even if the epidemiological data are now aligned with those relating to industrialized countries, the knowledge concerning breast cancer in Africa, particularly in Western Africa, still lack clinical data, medical treatments, and the evaluation of genetic and non-genetic factors implicated in the etiology of the disease. The early onset and the aggressiveness of diagnosed breast cancers in patients of African ancestry strongly suggest that the genetic risk factor may be a key component, but so far, very few studies on the impact of germ line mutations in breast cancer in Africa have been conducted, with negative consequences on prevention, awareness and patient management. Through Next Generation sequencing (NGS), we analyzed all of the coding regions and the exon-intron junctions of BRCA1 and BRCA2 genes-the two most important genes in hereditary breast cancer-in fifty-one women from Burkina Faso with early onset of breast cancer with or without a family history. RESULTS: We identified six different pathogenic mutations (three in BRCA1, three in BRCA2), two of which were recurrent in eight unrelated women. Furthermore, we identified, in four other patients, two variants of uncertain clinical significance (VUS) and two variants never previously described in literature, although one of them is present in the dbSNP database. CONCLUSIONS: This is the first study in which the entire coding sequence of BRCA genes has been analyzed through Next Generation Sequencing in Burkinabe young women with breast cancer. Our data support the importance of genetic risk factors in the etiology of breast cancer in this population and suggest the necessity to improve the genetic cancer risk assessment. Furthermore, the identification of the most frequent mutations of BRCA1 and BRCA2 in the population of Burkina Faso will allow the development of an inexpensive genetic test for the identification of subjects at high genetic cancer risk, which could be used to design personalized therapeutic protocols.
Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms , Ubiquitin-Protein Ligases/genetics , BRCA1 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Burkina Faso/epidemiology , Female , Genes, BRCA2 , Genes, Tumor Suppressor , Genetic Predisposition to Disease , Germ-Line Mutation , HumansABSTRACT
In this study, we investigated the sequence of (Structural Maintenance of Chromosomes flexible Hinge Domain containing 1) SMCHD1 gene in a cohort of clinically defined FSHD (facioscapulohumeral muscular dystrophy) patients in order to assess the distribution of SMCHD1 variants, considering the D4Z4 fragment size in terms of repeated units (RUs; short fragment: 1-7 RU, borderline: 8-10RU and normal fragment: >11RU). The analysis of SMCHD1 revealed the presence of 82 variants scattered throughout the introns, exons and 3'untranslated region (3'UTR) of the gene. Among them, 64 were classified as benign polymorphisms and 6 as VUS (variants of uncertain significance). Interestingly, seven pathogenic/likely pathogenic variants were identified in patients carrying a borderline or normal D4Z4 fragment size, namely c.182_183dupGT (p.Q62Vfs*48), c.2129dupC (p.A711Cfs*11), c.3469G>T (p.G1157*), c.5150_5151delAA (p.K1717Rfs*16) and c.1131+2_1131+5delTAAG, c.3010A>T (p.K1004*), c.853G>C (p.G285R). All of them were predicted to disrupt the structure and conformation of SMCHD1, resulting in the loss of GHKL-ATPase and SMC hinge essential domains. These results are consistent with the FSHD symptomatology and the Clinical Severity Score (CSS) of patients. In addition, five variants (c.*1376A>C, rs7238459; c.*1579G>A, rs559994; c.*1397A>G, rs150573037; c.*1631C>T, rs193227855; c.*1889G>C, rs149259359) were identified in the 3'UTR region of SMCHD1, suggesting a possible miRNA-dependent regulatory effect on FSHD-related pathways. The present study highlights the clinical utility of next-generation sequencing (NGS) platforms for the molecular diagnosis of FSHD and the importance of integrating molecular findings and clinical data in order to improve the accuracy of genotype-phenotype correlations.
Subject(s)
Chromosomal Proteins, Non-Histone/genetics , High-Throughput Nucleotide Sequencing/methods , Muscular Dystrophy, Facioscapulohumeral/genetics , Mutation , 3' Untranslated Regions , Adult , Aged , Chromosomal Proteins, Non-Histone/chemistry , Exons , Female , Humans , Introns , Italy , Male , Middle Aged , Phenotype , Sequence Analysis, DNAABSTRACT
The COVID-19 pandemic has strengthened the interest in the biological mechanisms underlying the complex interplay between infectious agents and the human host. The spectrum of phenotypes associated with the SARS-CoV-2 infection, ranging from the absence of symptoms to severe systemic complications, raised the question as to what extent the variable response to coronaviruses (CoVs) is influenced by the variability of the hosts' genetic background.To explore the current knowledge about this question, we designed a systematic review encompassing the scientific literature published from Jan. 2003 to June 2020, to include studies on the contemporary outbreaks caused by SARS-CoV-1, MERS-CoV and SARS-CoV-2 (namely SARS, MERS and COVID-19 diseases). Studies were eligible if human genetic variants were tested as predictors of clinical phenotypes.An ad hoc protocol for the rapid review process was designed according to the PRISMA paradigm and registered at the PROSPERO database (ID: CRD42020180860). The systematic workflow provided 32 articles eligible for data abstraction (28 on SARS, 1 on MERS, 3 on COVID-19) reporting data on 26 discovery cohorts. Most studies considered the definite clinical diagnosis as the primary outcome, variably coupled with other outcomes (severity was the most frequently analysed). Ten studies analysed HLA haplotypes (1 in patients with COVID-19) and did not provide consistent signals of association with disease-associated phenotypes. Out of 22 eligible articles that investigated candidate genes (2 as associated with COVID-19), the top-ranked genes in the number of studies were ACE2, CLEC4M (L-SIGN), MBL, MxA (n = 3), ACE, CD209, FCER2, OAS-1, TLR4, TNF-α (n = 2). Only variants in MBL and MxA were found as possibly implicated in CoV-associated phenotypes in at least two studies. The number of studies for each predictor was insufficient to conduct meta-analyses.Studies collecting large cohorts from different ancestries are needed to further elucidate the role of host genetic variants in determining the response to CoVs infection. Rigorous design and robust statistical methods are warranted.