Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cell ; 185(18): 3290-3306.e25, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35988542

ABSTRACT

In vitro cultured stem cells with distinct developmental capacities can contribute to embryonic or extraembryonic tissues after microinjection into pre-implantation mammalian embryos. However, whether cultured stem cells can independently give rise to entire gastrulating embryo-like structures with embryonic and extraembryonic compartments remains unknown. Here, we adapt a recently established platform for prolonged ex utero growth of natural embryos to generate mouse post-gastrulation synthetic whole embryo models (sEmbryos), with both embryonic and extraembryonic compartments, starting solely from naive ESCs. This was achieved by co-aggregating non-transduced ESCs, with naive ESCs transiently expressing Cdx2 or Gata4 to promote their priming toward trophectoderm and primitive endoderm lineages, respectively. sEmbryos adequately accomplish gastrulation, advance through key developmental milestones, and develop organ progenitors within complex extraembryonic compartments similar to E8.5 stage mouse embryos. Our findings highlight the plastic potential of naive pluripotent cells to self-organize and functionally reconstitute and model the entire mammalian embryo beyond gastrulation.


Subject(s)
Embryonic Stem Cells , Gastrulation , Animals , Cell Differentiation/physiology , Embryo, Mammalian/physiology , Embryonic Development , Endoderm , Mammals , Mice
2.
Mol Cell ; 82(1): 106-122.e9, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34875212

ABSTRACT

The fidelity of the early embryonic program is underlined by tight regulation of the chromatin. Yet, how the chromatin is organized to prohibit the reversal of the developmental program remains unclear. Specifically, the totipotency-to-pluripotency transition marks one of the most dramatic events to the chromatin, and yet, the nature of histone alterations underlying this process is incompletely characterized. Here, we show that linker histone H1 is post-translationally modulated by SUMO2/3, which facilitates its fixation onto ultra-condensed heterochromatin in embryonic stem cells (ESCs). Upon SUMOylation depletion, the chromatin becomes de-compacted and H1 is evicted, leading to totipotency reactivation. Furthermore, we show that H1 and SUMO2/3 jointly mediate the repression of totipotent elements. Lastly, we demonstrate that preventing SUMOylation on H1 abrogates its ability to repress the totipotency program in ESCs. Collectively, our findings unravel a critical role for SUMOylation of H1 in facilitating chromatin repression and desolation of the totipotent identity.


Subject(s)
Blastocyst/metabolism , Cell Lineage , Chromatin Assembly and Disassembly , Chromatin/metabolism , Histones/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , Blastocyst/cytology , Chromatin/genetics , Embryo Culture Techniques , Embryonic Development , Gene Expression Regulation, Developmental , HEK293 Cells , Histones/genetics , Humans , Mice , Phenotype , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitins/genetics , Ubiquitins/metabolism
3.
Nature ; 622(7983): 562-573, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673118

ABSTRACT

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Subject(s)
Embryo Implantation , Embryo, Mammalian , Embryonic Development , Human Embryonic Stem Cells , Humans , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Fertilization , Gastrulation , Germ Layers/cytology , Germ Layers/embryology , Human Embryonic Stem Cells/cytology , Trophoblasts/cytology , Yolk Sac/cytology , Yolk Sac/embryology , Giant Cells/cytology
4.
Nat Rev Mol Cell Biol ; 17(3): 155-69, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26860365

ABSTRACT

The molecular mechanisms and signalling pathways that regulate the in vitro preservation of distinct pluripotent stem cell configurations, and their induction in somatic cells by direct reprogramming, constitute a highly exciting area of research. In this Review, we integrate recent discoveries related to isolating unique naive and primed pluripotent stem cell states with altered functional and molecular characteristics, and from different species. We provide an overview of the pathways underlying pluripotent state transitions and interconversion in vitro and in vivo. We conclude by highlighting unresolved key questions, future directions and potential novel applications of such dynamic pluripotent cell states.


Subject(s)
Cellular Reprogramming , Pluripotent Stem Cells , Animals , Humans , Mice , Rats , Species Specificity
5.
Genes Dev ; 34(19-20): 1373-1391, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32943573

ABSTRACT

The N6-methyladenosine (m6A) modification is the most prevalent post-transcriptional mRNA modification, regulating mRNA decay and splicing. It plays a major role during normal development, differentiation, and disease progression. The modification is regulated by a set of writer, eraser, and reader proteins. The YTH domain family of proteins consists of three homologous m6A-binding proteins, Ythdf1, Ythdf2, and Ythdf3, which were suggested to have different cellular functions. However, their sequence similarity and their tendency to bind the same targets suggest that they may have overlapping roles. We systematically knocked out (KO) the Mettl3 writer, each of the Ythdf readers, and the three readers together (triple-KO). We then estimated the effect in vivo in mouse gametogenesis, postnatal viability, and in vitro in mouse embryonic stem cells (mESCs). In gametogenesis, Mettl3-KO severity is increased as the deletion occurs earlier in the process, and Ythdf2 has a dominant role that cannot be compensated by Ythdf1 or Ythdf3, due to differences in readers' expression pattern across different cell types, both in quantity and in spatial location. Knocking out the three readers together and systematically testing viable offspring genotypes revealed a redundancy in the readers' role during early development that is Ythdf1/2/3 gene dosage-dependent. Finally, in mESCs there is compensation between the three Ythdf reader proteins, since the resistance to differentiate and the significant effect on mRNA decay occur only in the triple-KO cells and not in the single KOs. Thus, we suggest a new model for the Ythdf readers function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.


Subject(s)
Dosage Compensation, Genetic , Gametogenesis/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Cell Line , Embryonic Stem Cells , Fertility/genetics , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice , Mice, Knockout
6.
Nature ; 593(7857): 119-124, 2021 05.
Article in English | MEDLINE | ID: mdl-33731940

ABSTRACT

The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro1,2, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.


Subject(s)
Embryo Culture Techniques , Embryo, Mammalian/embryology , Embryonic Development , In Vitro Techniques , Organogenesis , Animals , Embryo Culture Techniques/methods , Embryo, Mammalian/cytology , Female , Gastrulation , Male , Mice , Time Factors , Uterus
7.
Cell ; 144(2): 296-309, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21241896

ABSTRACT

Though many individual transcription factors are known to regulate hematopoietic differentiation, major aspects of the global architecture of hematopoiesis remain unknown. Here, we profiled gene expression in 38 distinct purified populations of human hematopoietic cells and used probabilistic models of gene expression and analysis of cis-elements in gene promoters to decipher the general organization of their regulatory circuitry. We identified modules of highly coexpressed genes, some of which are restricted to a single lineage but most of which are expressed at variable levels across multiple lineages. We found densely interconnected cis-regulatory circuits and a large number of transcription factors that are differentially expressed across hematopoietic states. These findings suggest a more complex regulatory system for hematopoiesis than previously assumed.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Hematopoiesis , Transcription Factors/metabolism , Gene Expression Profiling , Humans
8.
Nature ; 504(7479): 282-6, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24172903

ABSTRACT

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3ß signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Cellular Reprogramming , Chimera/embryology , Chromatin/metabolism , DNA Methylation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Female , Germ Layers/cytology , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Male , Mice , Morula/cytology , Organogenesis , Promoter Regions, Genetic/genetics , Regenerative Medicine , Reproducibility of Results , Signal Transduction , X Chromosome Inactivation
9.
Nature ; 502(7469): 65-70, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24048479

ABSTRACT

Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.


Subject(s)
Cellular Reprogramming/physiology , Induced Pluripotent Stem Cells/physiology , Models, Biological , Animals , Cell Line , Cells, Cultured , Cellular Reprogramming/genetics , DNA-Binding Proteins/genetics , Embryonic Stem Cells , Female , Gene Expression Regulation , HEK293 Cells , Humans , Kruppel-Like Factor 4 , Male , Mice , Transcription Factors/genetics
10.
Nature ; 488(7411): 409-13, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22801502

ABSTRACT

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM). This process is accompanied by genome-wide epigenetic changes, but how these chromatin modifications are biochemically determined requires further investigation. Here we show in mice and humans that the histone H3 methylated Lys 27 (H3K27) demethylase Utx (also known as Kdm6a) regulates the efficient induction, rather than maintenance, of pluripotency. Murine embryonic stem cells lacking Utx can execute lineage commitment and contribute to adult chimaeric animals; however, somatic cells lacking Utx fail to robustly reprogram back to the ground state of pluripotency. Utx directly partners with OSK reprogramming factors and uses its histone demethylase catalytic activity to facilitate iPSC formation. Genomic analysis indicates that Utx depletion results in aberrant dynamics of H3K27me3 repressive chromatin demethylation in somatic cells undergoing reprogramming. The latter directly hampers the derepression of potent pluripotency promoting gene modules (including Sall1, Sall4 and Utf1), which can cooperatively substitute for exogenous OSK supplementation in iPSC formation. Remarkably, Utx safeguards the timely execution of H3K27me3 demethylation observed in embryonic day 10.5-11 primordial germ cells (PGCs), and Utx-deficient PGCs show cell-autonomous aberrant epigenetic reprogramming dynamics during their embryonic maturation in vivo. Subsequently, this disrupts PGC development by embryonic day 12.5, and leads to diminished germline transmission in mouse chimaeras generated from Utx-knockout pluripotent cells. Thus, we identify Utx as a novel mediator with distinct functions during the re-establishment of pluripotency and germ cell development. Furthermore, our findings highlight the principle that molecular regulators mediating loss of repressive chromatin during in vivo germ cell reprogramming can be co-opted during in vitro reprogramming towards ground state pluripotency.


Subject(s)
Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Germ Cells/metabolism , Histone Demethylases/metabolism , Nuclear Proteins/metabolism , Alleles , Animals , Biocatalysis , Cell Lineage , Chimera , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Female , Fibroblasts , Gene Knockdown Techniques , Germ Cells/enzymology , HEK293 Cells , Histone Demethylases/deficiency , Histone Demethylases/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Male , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Transgenes/genetics
13.
Bioinformatics ; 27(13): i177-85, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21685068

ABSTRACT

MOTIVATION: Deciphering the complex mechanisms by which regulatory networks control gene expression remains a major challenge. While some studies infer regulation from dependencies between the expression levels of putative regulators and their targets, others focus on measured physical interactions. RESULTS: Here, we present Physical Module Networks, a unified framework that combines a Bayesian model describing modules of co-expressed genes and their shared regulation programs, and a physical interaction graph, describing the protein-protein interactions and protein-DNA binding events that coherently underlie this regulation. Using synthetic data, we demonstrate that a Physical Module Network model has similar recall and improved precision compared to a simple Module Network, as it omits many false positive regulators. Finally, we show the power of Physical Module Networks to reconstruct meaningful regulatory pathways in the genetically perturbed yeast and during the yeast cell cycle, as well as during the response of primary epithelial human cells to infection with H1N1 influenza. AVAILABILITY: The PMN software is available, free for academic use at http://www.compbio.cs.huji.ac.il/PMN/. CONTACT: aregev@broad.mit.edu; nirf@cs.huji.ac.il.


Subject(s)
Bayes Theorem , Gene Expression Regulation , Gene Regulatory Networks , Cell Cycle , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Software
14.
Stem Cell Reports ; 17(11): 2484-2500, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36270280

ABSTRACT

The recent derivation of human trophoblast stem cells (TSCs) from placental cytotrophoblasts and blastocysts opened opportunities for studying the development and function of the human placenta. Recent reports have suggested that human naïve, but not primed, pluripotent stem cells (PSCs) retain an exclusive potential to generate TSCs. Here we report that, in the absence of WNT stimulation, transforming growth factor ß (TGF-ß) pathway inhibition leads to direct and robust conversion of primed human PSCs into TSCs. The resulting primed PSC-derived TSC lines exhibit self-renewal, can differentiate into the main trophoblast lineages, and present RNA and epigenetic profiles that are indistinguishable from recently established TSC lines derived from human placenta, blastocysts, or isogenic human naïve PSCs expanded under human enhanced naïve stem cell medium (HENSM) conditions. Activation of nuclear Yes-associated protein (YAP) signaling is sufficient for this conversion and necessary for human TSC maintenance. Our findings underscore a residual plasticity in primed human PSCs that allows their in vitro conversion into extra-embryonic trophoblast lineages.


Subject(s)
Pluripotent Stem Cells , Trophoblasts , Female , Humans , Pregnancy , Blastocyst , Cell Differentiation , Placenta , Pluripotent Stem Cells/metabolism
15.
Cell Stem Cell ; 28(9): 1549-1565.e12, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33915080

ABSTRACT

Isolating human MEK/ERK signaling-independent pluripotent stem cells (PSCs) with naive pluripotency characteristics while maintaining differentiation competence and (epi)genetic integrity remains challenging. Here, we engineer reporter systems that allow the screening for defined conditions that induce molecular and functional features of human naive pluripotency. Synergistic inhibition of WNT/ß-CATENIN, protein kinase C (PKC), and SRC signaling consolidates the induction of teratoma-competent naive human PSCs, with the capacity to differentiate into trophoblast stem cells (TSCs) and extraembryonic naive endodermal (nEND) cells in vitro. Divergent signaling and transcriptional requirements for boosting naive pluripotency were found between mouse and human. P53 depletion in naive hPSCs increased their contribution to mouse-human cross-species chimeric embryos upon priming and differentiation. Finally, MEK/ERK inhibition can be substituted with the inhibition of NOTCH/RBPj, which induces alternative naive-like hPSCs with a diminished risk for deleterious global DNA hypomethylation. Our findings set a framework for defining the signaling foundations of human naive pluripotency.


Subject(s)
Pluripotent Stem Cells , Animals , Cell Differentiation , Embryo, Mammalian , Humans , Mice , Signal Transduction , Trophoblasts
16.
Hum Mol Genet ; 17(23): 3663-74, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18723858

ABSTRACT

Hereditary inclusion body myopathy (HIBM) is an adult onset, slowly progressive distal and proximal myopathy. Although the causing gene, GNE, encodes for a key enzyme in the biosynthesis of sialic acid, its primary function in HIBM remains unknown. To elucidate the pathological mechanisms leading from the mutated GNE to the HIBM phenotype, we attempted to identify and characterize early occurring downstream events by analyzing the genomic expression patterns of muscle specimens from 10 HIBM patients carrying the M712T Persian Jewish founder mutation and presenting mild histological changes, compared with 10 healthy matched control individuals, using GeneChip expression microarrays. When analyzing the expression profile data sets by the intersection of three statistic methods (Student's t-test, TNoM and Info score), we found that the HIBM-specific transcriptome consists of 374 differentially expressed genes. The specificity of the HIBM transcriptome was assessed by the minimal transcript overlap found between HIBM and the transcriptome of nine additional muscle disorders including adult onset limb girdle myopathies, inflammatory myopathies and early onset conditions. A strikingly high proportion (18.6%) of the overall differentially expressed mRNAs of known function were found to encode for proteins implicated in various mitochondrial processes, revealing mitochondria pathways dysregulation. Mitochondrial morphological analysis by video-rate confocal microscopy showed a high degree of mitochondrial branching in cells of HIBM patients. The subtle involvement of mitochondrial processes identified in HIBM reveals an unexpected facet of HIBM pathophysiology which could at least partially explain the slow evolution of this disorder and give new insights in the disease mechanism.


Subject(s)
Mitochondria/genetics , Mitochondria/metabolism , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/metabolism , Adult , Aged , Cells, Cultured , Female , Humans , Male , Middle Aged , Mitochondria/ultrastructure , Molecular Sequence Data , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Oligonucleotide Array Sequence Analysis
17.
Epigenomes ; 4(1)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-34968239

ABSTRACT

The rising field of RNA modifications is stimulating massive research nowadays. m6A, the most abundant mRNA modification is highly conserved during evolution. Through the last decade, the essential components of this dynamic mRNA modification machinery were found and classified into writer, eraser and reader proteins. m6A modification is now known to take part in diverse biological processes such as embryonic development, cell circadian rhythms and cancer stem cell proliferation. In addition, there is already firm evidence for the importance of m6A modification in stem cell differentiation and gametogenesis, both in males and females. This review attempts to summarize the important results of recent years studying the mechanism underlying stem cell differentiation and gametogenesis processes.

18.
Cell Stem Cell ; 24(2): 328-341.e9, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30554962

ABSTRACT

The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic , Proto-Oncogene Proteins c-myc/metabolism , Transcription, Genetic , Animals , Cell Lineage/genetics , Chromatin/metabolism , Demethylation , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Mice , Protein Binding , RNA, Transfer/metabolism , Transcription Factors/metabolism
19.
Am J Respir Cell Mol Biol ; 38(3): 324-36, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17921359

ABSTRACT

The prevalence and morbidity of asthma, a chronic inflammatory airway disease, is increasing. Animal models provide a meaningful but limited view of the mechanisms of asthma in humans. A systems-level view of asthma that integrates multiple levels of molecular and functional information is needed. For this, we compiled a gene expression compendium from five publicly available mouse microarray datasets and a gene knowledge base of 4,305 gene annotation sets. Using this collection we generated a high-level map of the functional themes that characterize animal models of asthma, dominated by innate and adaptive immune response. We used Module Networks analysis to identify co-regulated gene modules. The resulting modules reflect four distinct responses to treatment, including early response, general induction, repression, and IL-13-dependent response. One module with a persistent induction in response to treatment is mainly composed of genes with suggested roles in asthma, suggesting a similar role for other module members. Analysis of IL-13-dependent response using protein interaction networks highlights a role for TGF-beta1 as a key regulator of asthma. Our analysis demonstrates the discovery potential of systems-level approaches and provides a framework for applying such approaches to asthma.


Subject(s)
Asthma/genetics , Asthma/immunology , Interleukin-13/immunology , Protein Interaction Mapping , Systems Biology , Transforming Growth Factor beta1/physiology , Algorithms , Allergens , Animals , Asthma/metabolism , Asthma/pathology , Asthma/therapy , Disease Models, Animal , Gene Expression Profiling , Humans , Hypersensitivity , Immunity, Innate , Interleukin-13/metabolism , Mice , Mice, Inbred A , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Knockout , Models, Biological , Oligonucleotide Array Sequence Analysis , Ovalbumin , Reproducibility of Results , Transcription, Genetic
20.
Cell Stem Cell ; 23(3): 412-425.e10, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30122475

ABSTRACT

Mbd3, a member of nucleosome remodeling and deacetylase (NuRD) co-repressor complex, was previously identified as an inhibitor for deterministic induced pluripotent stem cell (iPSC) reprogramming, where up to 100% of donor cells successfully complete the process. NuRD can assume multiple mutually exclusive conformations, and it remains unclear whether this deterministic phenotype can be attributed to a specific Mbd3/NuRD subcomplex. Moreover, since complete ablation of Mbd3 blocks somatic cell proliferation, we aimed to explore functionally relevant alternative ways to neutralize Mbd3-dependent NuRD activity. We identify Gatad2a, a NuRD-specific subunit, whose complete deletion specifically disrupts Mbd3/NuRD repressive activity on the pluripotency circuitry during iPSC differentiation and reprogramming without ablating somatic cell proliferation. Inhibition of Gatad2a facilitates deterministic murine iPSC reprogramming within 8 days. We validate a distinct molecular axis, Gatad2a-Chd4-Mbd3, within Mbd3/NuRD as being critical for blocking reestablishment of naive pluripotency and further highlight signaling-dependent and post-translational modifications of Mbd3/NuRD that influence its interactions and assembly.


Subject(s)
DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , GATA Transcription Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Transcription Factors/metabolism , Animals , Cells, Cultured , Female , Induced Pluripotent Stem Cells/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL