ABSTRACT
This study presents the first complete mitogenome of the Brazilian Atlantic bushmaster Lachesis with insights into snake evolution. The total length was 17,177 bp, consisting of 13 PCGs, 22 tRNAs, two rRNAs and a duplicate control region (CRs). Almost all genes were encoded by the heavy-strand, except for the ND6 gene and eight tRNAs (tRNA-Gln, Ala, Asn, Cys, Tyr, Ser[TGA anticodon], Glu, Pro). Only ATG, ATA, and ATC were starting codons for protein-coding sequences. Stop codons mainly were TAA, AGA, AGG, and TAG; whereas ND1, ND3, and CYTB terminated with incomplete stop codons. Phylogeny retrieved Lachesis within the Crotalinae as the sister group of Agkistrodon; and the Lachesis+Agkistrodon clade as the sister group of (Sistrurus+Crotalus)+Bothrops. The tree supports Crotalinae, Viperinae, and Azemiopinae in the Viperidae family, being sister taxa of Colubridae+(Elapidae+Psammophiidae). The mean genetic distance across 15 snake families and 57 nucleotide sequences was 0.37. The overall mean value of genetic distance across the Crotalinae was 0.23, with Lachesis muta exhibiting the shortest distance of 0.2 with Agkistrodon piscivorus, Protobothrops dabieshanensis and P. flavoviridis and the greatest 0.25 with Gloydius blomhoffii, Trimeresurus albolabris, S. miliarius, and Deinagkistrodon acutus. The complete Atlantic L. muta mitogenome presented herein is only the third annotated mitogenome from more than 430 described Brazilian snake species.
Subject(s)
Crotalinae , Genome, Mitochondrial , Viperidae , Humans , Animals , Crotalinae/genetics , Viperidae/genetics , Genome, Mitochondrial/genetics , Codon, Terminator , BrazilABSTRACT
The IUCN Red List of Threatened Species contains 175 Brazilian bat species that are threatened by extinction in some degree. From this perspective, it is essential to expand the knowledge about the genetic diversity of vulnerable bats. Genomic sequencing can be useful to generate robust and informative genetic references, increasing resolution when analyzing relationships among populations, species, or higher taxonomic levels. In this study, we sequenced and characterized in detail the first complete mitochondrial genomes of Furipterus horrens, Lonchorhina aurita, and Natalus macrourus, and investigated their phylogenetic position based on amino acid sequences of protein-coding genes (PCGs). The mitogenomes of these species are 16,516, 16,697, and 16,668 bp in length, respectively, and each comprises 13 PCGs, 22 tRNA genes, two rRNA genes, and a putative control region (CR). In the three species, genes were arranged similarly to all other previously described bat mitogenomes, and nucleotide composition was also consistent with the reported range. The length and arrangement of rrnS and rrnL were also consistent with those of other bat species, showing a positive AT-skew and a negative GC-skew. Except for trnS1, for which we did not observe the DHU arm, all other tRNAs showed the cloverleaf secondary structure in the three species. In addition, the mitogenomes showed minor differences in start and stop codons, and in all PCGs, codons ending in adenine were more common compared to those ending in guanine. We found that PCGs of the three species use multiple codons to encode each amino acid, following the previously documented pattern. Furthermore, all PCGs are under purifying selection, with atp8 experiencing the most relaxed purifying selection. Considering the phylogenetic reconstruction, F. horrens was recovered as sister to Noctilio leporinus, L. aurita and Tonatia bidens shared a node within Phyllostomidae, and N. macrourus appeared as sister to Molossidae and Vespertilionidae.
Subject(s)
Chiroptera , Genome, Mitochondrial , Phylogeny , Animals , Chiroptera/genetics , Chiroptera/classification , Genome, Mitochondrial/genetics , RNA, Transfer/genetics , Endangered SpeciesABSTRACT
The biodiversity crisis is a global phenomenon, and measures to monitor, stop, and revert the impacts on species' extinction risk are urgently needed. Megadiverse countries, especially in the Global South, are responsible for managing and protecting Earth's biodiversity. Various initiatives have started to sequence reference-level genomes or perform large-scale species detection and monitoring through environmental DNA. Here, we outline the Genomics of the Brazilian Biodiversity (GBB) consortium that is contributing to public policies on the conservation and management of Brazilian species. We describe our unique public-private governance and lessons in setting up a genomic consortium in a megadiverse country of continental scale. We explore the challenges while sharing knowledge for similar initiatives in the Global South. Ultimately, we aim to encourage Brazilian institutions and other megadiverse countries to invest and participate in large-scale genomic initiatives, demonstrating their commitment to preserving and monitoring their exceptional natural heritage while contributing to global biodiversity conservation.
ABSTRACT
Ipomoea is a large pantropical genus globally distributed, which importance goes beyond the economic value as food resources or ornamental crops. This highly diverse genus has been the focus of a great number of studies, enriching the plant genomics knowledge, and challenging the plant evolution models. In the Carajás mountain range, located in Eastern Amazon, the savannah-like ferruginous ecosystem known as canga harbors highly specialized plant and animal populations, and Ipomoea is substantially representative in such restrictive habitat. Thus, to provide genetic data and insights into whole plastome phylogenetic relationships among key Ipomoea species from Eastern Amazon with little to none previously available data, we present the complete plastome sequences of twelve lineages of the genus, including the canga microendemic I. cavalcantei, the closely related I. marabaensis, and their putative hybrids. The twelve plastomes presented similar gene content as most publicly available Ipomoea plastomes, although the putative hybrids were correctly placed as closely related to the two parental species. The cavalcantei-marabaensis group was consistently grouped between phylogenetic methods. The closer relationship of the I. carnea plastome with the cavalcantei-marabaensis group, as well as the branch formed by I. quamoclit, I. asarifolia and I. maurandioides, were probably a consequence of insufficient taxonomic representativity, instead of true genetic closeness, reinforcing the importance of new plastome assemblies to resolve inconsistencies and boost statistical confidence, especially the case for South American clades of Ipomoea. The search for k-mers presenting high dispersion among the frequency distributions pointed to highly variable coding and intergenic regions, which may potentially contribute to the genetic diversity observed at species level. Our results contribute to the resolution of uncertain clades within Ipomoea and future phylogenomic studies, bringing unprecedented results to Ipomoea species with restricted distribution, such as I. cavalcantei.
Subject(s)
Ipomoea , Animals , DNA, Intergenic , Ecosystem , Genome, Plant , Ipomoea/genetics , PhylogenyABSTRACT
Insectivorous bats provide ecosystem services in agricultural and urban landscapes by consuming arthropods that are considered pests. Bat species inhabiting cities are expected to consume insects associated with urban areas, such as mosquitoes, flying termites, moths, and beetles. We captured insectivorous bats in the Federal District of Brazil and used fecal DNA metabarcoding to investigate the arthropod consumed by five bat species living in colonies in city buildings, and ascertained whether their predation was related to ecosystem services. These insectivorous bat species were found to consume 83 morphospecies of arthropods and among these 41 were identified to species, most of which were agricultural pests. We propose that bats may roost in the city areas and forage in the nearby agricultural fields using their ability to fly over long distances. We also calculated the value of the pest suppression ecosystem service by the bats. By a conservative estimation, bats save US$ 94 per hectare of cornfields, accounting for an annual savings of US$ 390.6 million per harvest in Brazil. Our study confirms that, regardless of their roosting location, bats are essential for providing ecosystem services in the cities, with extensive impacts on crops and elsewhere, in addition to significant savings in the use of pesticides.
Subject(s)
Chiroptera , Insecta , Pest Control, Biological , Animals , Brazil , Cities , Predatory BehaviorABSTRACT
The canga of the Serra dos Carajás, in Eastern Amazon, is home to a unique open plant community, harboring several endemic and rare species. Although a complete flora survey has been recently published, scarce to no genetic information is available for most plant species of the ironstone outcrops of the Serra dos Carajás. In this scenario, DNA barcoding appears as a fast and effective approach to assess the genetic diversity of the Serra dos Carajás flora, considering the growing need for robust biodiversity conservation planning in such an area with industrial mining activities. Thus, after testing eight different DNA barcode markers (matK, rbcL, rpoB, rpoC1, atpF-atpH, psbK-psbI, trnH-psbA, and ITS2), we chose rbcL and ITS2 as the most suitable markers for a broad application in the regional flora. Here we describe DNA barcodes for 1,130 specimens of 538 species, 323 genera, and 115 families of vascular plants from a highly diverse flora in the Amazon basin, with a total of 344 species being barcoded for the first time. In addition, we assessed the potential of using DNA metabarcoding of bulk samples for surveying plant diversity in the canga. Upon achieving the first comprehensive DNA barcoding effort directed to a complete flora in the Brazilian Amazon, we discuss the relevance of our results to guide future conservation measures in the Serra dos Carajás.
ABSTRACT
Plants living above and around caves represent an important, albeit poorly studied, resource within cave ecosystems. The presence of plant material (root-like structures or rhizothemes, saplings, seeds, and seedlings) correlates positively with the biodiversity of the cave dwelling animals as shown for iron-ore caves in Carajás, Pará, Brazil. Plant material collected in caves has proven to be difficult to identify by traditional botanical methods, thus this research aims to provide a qualitative insight into the taxonomy and morphology of rhizothemes and other plant fragments found in the caves. The identification process used a combination of different molecular markers (ITS2, rbcL, and trnH-psbA) followed by a comparison of the sequences obtained against publicly available databases. The rhizothemes were submitted to micromorphological analysis to ascertain their putative root or stem origin and to compare their anatomy with known patterns found in the plant families or genera recovered through molecular matches. All studied samples were Angiosperms, mostly belonging to subclass Rosideae, within four orders: Malpighiales (Euphorbiaceae, Hypericaceae), Sapindales (Anacardiaceae and Sapindaceae), Myrtales (Myrtaceae), Fabales (Fabaceae), and only two belonging to subclass Asteridae, order Gentianales (Apocynaceae). Some of the samples were matched to generic level, with ITS2 being the best marker to identify the fragments because it shows high degree of sequence variation even at specific level and result reliability. All rhizothemes turned out to be roots, and correspondence was found between the existing literature and the individual anatomical patterns for the families and genera retrieved. DNA barcode has proved to be a useful tool to identify plant fragments found in this challenging environment. However, the existence of well curated, authoritatively named collections with ample biological information has proven to be essential to achieve a reliable identification.
ABSTRACT
Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the "Mexicana complex", reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development.