Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Genomics ; 24(1): 603, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821819

ABSTRACT

Zinc finger-homeodomain (ZHD) proteins are mostly expressed in plants and are involved in proper growth and development and minimizing biotic and abiotic stress. A recent study identified and characterized the ZHD gene family in chilli (Capsicum annuum L.) to determine their probable molecular function. ZHD genes with various physicochemical characteristics were discovered on twelve chromosomes in chilli. We separated ZHD proteins into two major groups using sequence alignment and phylogenetic analysis. These groups differ in gene structure, motif distribution, and a conserved ZHD and micro-zinc finger ZF domain. The majority of the CaZHDs genes are preserved, early duplication occurred recently, and significant pure selection took place throughout evolution, according to evolutionary study. According to expression profiling, the genes were found to be equally expressed in tissues above the ground, contribute to plant growth and development and provide tolerance to biotic and abiotic stress. This in silico analysis, taken as a whole, hypothesized that these genes perform distinct roles in molecular and phytohormone signaling processes, which may serve as a foundation for subsequent research into the roles of these genes in other crops.


Subject(s)
Capsicum , Capsicum/genetics , Capsicum/metabolism , Phylogeny , DNA-Binding Proteins/genetics , Zinc Fingers/genetics , Genes, Homeobox , Stress, Physiological/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
Genes (Basel) ; 13(11)2022 11 14.
Article in English | MEDLINE | ID: mdl-36421787

ABSTRACT

Zinc finger-homeodomain proteins are amongst the most prominent transcription factors (TFs) involved in biological processes, such as growth, development, and morphogenesis, and assist plants in alleviating the adverse effects of abiotic and biotic stresses. In the present study, genome-wide identification and expression analyses of the maize ZHD gene family were conducted. A total of 21 ZHD genes with different physicochemical properties were found distributed on nine chromosomes in maize. Through sequence alignment and phylogenetic analysis, we divided ZHD proteins into eight groups that have variations in gene structure, motif distribution, and a conserved ZF domain. Synteny analysis indicated duplication in four pairs of genes and the presence of orthologues of maize in monocots. Ka/Ks ratios suggested that strong pure selection occurred during evolution. Expression profiling revealed that the genes are evenly expressed in different tissues. Most of the genes were found to make a contribution to abiotic stress response, plant growth, and development. Overall, the evolutionary research on exons and introns, motif distributions, and cis-acting regions suggests that these genes play distinct roles in biological processes which may provide a basis for further study of these genes' functions in other crops.


Subject(s)
Gene Expression Regulation, Plant , Zea mays , Zea mays/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Multigene Family , Gene Expression Profiling , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL