Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 361: 121218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805961

ABSTRACT

The intricate interaction of natural and anthropogenic factors drives changes in land and water in response to societal demands and climate change. However, there has been insufficient information on the feedback effects in dryland hotspots altered by land change dynamics. This research compared two transboundary inland lakes, the Lake Chad basin (LCB) in Africa and the Aral Sea basin (ASB) in Central Asia, using remote sensing and geographic information system techniques to analyze and quantify present and future land cover dynamics, resilience, and their feedback effects. The study integrated Cellular Automata, Markov Chain, and Multilayer Perceptron models to predict LULC changes up to 2030. Descriptive statistics, ordinary least squares regression, hotspot Gi-Bin, trend analysis, and advanced geostatistical methods were utilized to identify relationships, patterns, magnitudes, and directions of observed changes in the feedback effects. From 2000 to 2030, the analysis unveils intriguing trends, including an increase in cropland from 48% to 51% and a decrease in shrubland from 18% to 15% in the LCB. The grassland increased from 21% to 22%, and the settlement expanded from 0.10 to 0.60% in the ASB. Water bodies remained stable at 1.60 % in LCB, while in ASB, it declined from 3% to 2%. These changes were significantly influenced by population, elevation, and temperature in both basins, with irrigation also playing a significant role in the ASB and slope in LCB. The study further revealed discernible shifts in normalized difference vegetation index, temperature, and precipitation linked to specific land cover conversions, suggesting alterations in surface properties and vegetation health. This study underscores the complex interplay between land cover dynamics, resilience, climate variability, and feedback mechanisms in LCB and ASB.


Subject(s)
Climate Change , Lakes , Africa , Geographic Information Systems , Conservation of Natural Resources , Asia
2.
Sci Rep ; 11(1): 17376, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462606

ABSTRACT

Understanding the influence of land use/land cover (LULC) on water quality is pertinent to sustainable water management. This study aimed at assessing the spatio-seasonal variation of water quality in relation to land use types in Lake Muhazi, Rwanda. The National Sanitation Foundation Water Quality Index (NSF-WQI) was used to evaluate the anthropogenically-induced water quality changes. In addition to Principal Components Analysis (PCA), a Cluster Analysis (CA) was applied on 12-clustered sampling sites and the obtained NSF-WQI. Lastly, the Partial Least Squares Path Modelling (PLS-PM) was used to estimate the nexus between LULC, water quality parameters, and the obtained NSF-WQI. The results revealed a poor water quality status at the Mugorore and Butimba sites in the rainy season, then at Mugorore and Bwimiyange sites in the dry season. Furthermore, PCA displayed a sample dispersion based on seasonality while NSF-WQI's CA hierarchy grouped the samples corresponding to LULC types. Finally, the PLS-PM returned a strong positive correlation (+ 0.831) between LULCs and water quality parameters in the rainy season but a negative correlation coefficient (- 0.542) in the dry season, with great influences of cropland on the water quality parameters. Overall, this study concludes that the lake is seasonally influenced by anthropogenic activities, suggesting sustainable land-use management decisions, such as the establishment and safeguarding protection belts in the lake vicinity.

3.
Article in English | MEDLINE | ID: mdl-31948082

ABSTRACT

The expansion of urban areas due to population increase and economic expansion creates demand and depletes natural resources, thereby causing land use changes in the main cities. This study focuses on land cover datasets to characterize impervious surface (urban area) expansion in select cities from 1993 to 2017, using supervised classification maximum likelihood techniques and by quantifying impervious surfaces. The results indicate an increasing trend in the impervious surface area by 35% in Bishkek, 75% in Osh, and 15% in Jalal-Abad. The overall accuracy (OA) for the image classification of two different datasets for the three cities was between 82% and 93%, and the kappa coefficients (KCs) were approximately 77% and 91%. The Landsat images with other supplementary data showed positive urban growth in all of the cities. The GDP, industrial growth, and urban population growth were driving factors of impervious surface sprawl in these cities from 1993 to 2017.Landscape Expansion Index (LEI) results also provided good evidence for the change of impervious surfaces during the study period. The results emphasize the idea of applying future planning and sustainable urban development procedures for sustainable use of natural resources and their management, which will increase life quality in urban areas and environments.


Subject(s)
Satellite Imagery , Urbanization/trends , Cities/statistics & numerical data , Conservation of Natural Resources , Environmental Monitoring , Kyrgyzstan , Population Growth
4.
Article in English | MEDLINE | ID: mdl-31861894

ABSTRACT

Examining the drivers of landscape ecological risk can provide scientific information for planning and landscape optimization. The landscapes of the Amu Darya Delta (ADD) have recently undergone great changes, leading to increases in landscape ecological risks. However, the relationships between landscape ecological risk and its driving factors are poorly understood. In this study, the ADD was selected to construct landscape ecological risk index (ERI) values for 2000 and 2015. Based on a geographically weighted regression (GWR) model, the relationship between each of the normalized difference vegetation index (NDVI), land surface temperature (LST), digital elevation model (DEM), crop yield, population density (POP), and road density and the spatiotemporal variation in ERI were explored. The results showed that the ERI decreased from the periphery of the ADD to the centre and that high-risk areas were distributed in the ADD's downstream region, with the total area of high-risk areas increasing by 86.55% from 2000 to 2015. The ERI was spatially correlated with Moran's I in 2000 and 2015, with correlation of 0.67 and 0.72, respectively. The GWR model indicated that in most ADD areas, the NDVI had a negative impact on the ERI, whereas LST and DEM had positive impacts on the ERI. Crop yield, road density and POP were positively correlated with the ERI in the central region of the ADD, at road nodes and in densely populated urban areas, respectively. Based on the findings of this study, we suggest that the ecological constraints of the aforementioned factors should be considered in the process of delta development and protection.


Subject(s)
Ecosystem , Environmental Monitoring/methods , China , Conservation of Natural Resources , Humans , Models, Theoretical , Population Density , Spatial Regression , Temperature , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL