Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 12(1): 3987, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183656

ABSTRACT

Here we examine the association between DNA methylation in circulating leukocytes and blood lipids in a multi-ethnic sample of 16,265 subjects. We identify 148, 35, and 4 novel associations among Europeans, African Americans, and Hispanics, respectively, and an additional 186 novel associations through a trans-ethnic meta-analysis. We observe a high concordance in the direction of effects across racial/ethnic groups, a high correlation of effect sizes between high-density lipoprotein and triglycerides, a modest overlap of associations with epigenome-wide association studies of other cardio-metabolic traits, and a largely non-overlap with lipid loci identified to date through genome-wide association studies. Thirty CpGs reached significance in at least 2 racial/ethnic groups including 7 that showed association with the expression of an annotated gene. CpGs annotated to CPT1A showed evidence of being influenced by triglycerides levels. DNA methylation levels of circulating leukocytes show robust and consistent association with blood lipid levels across multiple racial/ethnic groups.


Subject(s)
DNA Methylation/genetics , Leukocytes/cytology , Lipids/blood , Lipoproteins, HDL/blood , Adult , Black or African American , Aged , Carnitine O-Palmitoyltransferase/genetics , CpG Islands/genetics , Epigenesis, Genetic , Epigenome/genetics , Epigenomics , Female , Hispanic or Latino , Humans , Male , Middle Aged , Quantitative Trait Loci/genetics , White People
2.
Nat Commun ; 12(1): 24, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33402679

ABSTRACT

Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.


Subject(s)
Anorexia Nervosa/genetics , Blood Glucose/metabolism , Glucose Intolerance/genetics , Insulin Receptor Substrate Proteins/genetics , Insulin Resistance/genetics , Insulin/blood , Kruppel-Like Transcription Factors/genetics , Adult , Anorexia Nervosa/blood , Anorexia Nervosa/ethnology , Anorexia Nervosa/physiopathology , Fasting/blood , Female , Gene Expression , Genetic Loci , Genome-Wide Association Study , Glucose Intolerance/blood , Glucose Intolerance/ethnology , Glucose Intolerance/physiopathology , Humans , Insulin Receptor Substrate Proteins/blood , Kruppel-Like Transcription Factors/blood , Male , Middle Aged , Phenotype , Sex Characteristics , Sex Factors , Waist-Hip Ratio , White People
5.
Metabolism ; 64(10): 1359-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26256467

ABSTRACT

OBJECTIVE: The triglyceride (TG) response to a high-fat meal (postprandial lipemia, PPL) affects cardiovascular disease risk and is influenced by genes and environment. Genes involved in lipid metabolism have dominated genetic studies of PPL TG response. We sought to elucidate common genetic variants through a genome-wide association (GWA) study in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). METHODS: The GOLDN GWAS discovery sample consisted of 872 participants within families of European ancestry. Genotypes for 2,543,887 variants were measured or imputed from HapMap. Replication of our top results was performed in the Heredity and Phenotype Intervention (HAPI) Heart Study (n = 843). PPL TG response phenotypes were constructed from plasma TG measured at baseline (fasting, 0 hour), 3.5 and 6 hours after a high-fat meal, using a random coefficient regression model. Association analyses were adjusted for covariates and principal components, as necessary, in a linear mixed model using the kinship matrix; additional models further adjusted for fasting TG were also performed. Meta-analysis of the discovery and replication studies (n = 1715) was performed on the top SNPs from GOLDN. RESULTS: GOLDN revealed 111 suggestive (p < 1E-05) associations, with two SNPs meeting GWA significance level (p < 5E-08). Of the two significant SNPs, rs964184 demonstrated evidence of replication (p = 1.20E-03) in the HAPI Heart Study and in a joint analysis, was GWA significant (p = 1.26E-09). Rs964184 has been associated with fasting lipids (TG and HDL) and is near ZPR1 (formerly ZNF259), close to the APOA1/C3/A4/A5 cluster. This association was attenuated upon additional adjustment for fasting TG. CONCLUSION: This is the first report of a genome-wide significant association with replication for a novel phenotype, namely PPL TG response. Future investigation into response phenotypes is warranted using pathway analyses, or newer genetic technologies such as metabolomics.


Subject(s)
Diet, High-Fat , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Triglycerides/blood , Adult , Aged , Female , Genome-Wide Association Study , Genotype , Humans , Lipids/blood , Male , Meals , Meta-Analysis as Topic , Middle Aged , National Heart, Lung, and Blood Institute (U.S.) , Polymorphism, Single Nucleotide , Postprandial Period/drug effects , Postprandial Period/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL