Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Plant Cell ; 36(5): 1868-1891, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38299382

ABSTRACT

Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Carotenoids , Gene Expression Regulation, Plant , Carotenoids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Nudix Hydrolases , Chloroplasts/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Farnesyltranstransferase/metabolism , Farnesyltranstransferase/genetics , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Protein Processing, Post-Translational , Plants, Genetically Modified , Plant Leaves/metabolism , Plant Leaves/genetics
SELECTION OF CITATIONS
SEARCH DETAIL