Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 38: 289-313, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31986069

ABSTRACT

A striking change has happened in the field of immunology whereby specific metabolic processes have been shown to be a critical determinant of immune cell activation. Multiple immune receptor types rewire metabolic pathways as a key part of how they promote effector functions. Perhaps surprisingly for immunologists, the Krebs cycle has emerged as the central immunometabolic hub of the macrophage. During proinflammatory macrophage activation, there is an accumulation of the Krebs cycle intermediates succinate and citrate, and the Krebs cycle-derived metabolite itaconate. These metabolites have distinct nonmetabolic signaling roles that influence inflammatory gene expression. A key bioenergetic target for the Krebs cycle, the electron transport chain, also becomes altered, generating reactive oxygen species from Complexes I and III. Similarly, alternatively activated macrophages require α-ketoglutarate-dependent epigenetic reprogramming to elicit anti-inflammatory gene expression. In this review, we discuss these advances and speculate on the possibility of targeting these events therapeutically for inflammatory diseases.


Subject(s)
Citric Acid Cycle , Immunity , Macrophages/immunology , Macrophages/metabolism , Animals , Disease Susceptibility , Energy Metabolism , Humans , Immunomodulation , Macrophage Activation/immunology , Signal Transduction
2.
Cell ; 187(9): 2030-2051, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670064

ABSTRACT

Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.


Subject(s)
Immunity, Innate , Humans , Animals , History, 20th Century , History, 21st Century , Adaptive Immunity , Allergy and Immunology/history
3.
Nat Immunol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956378

ABSTRACT

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.

5.
Cell ; 174(4): 780-784, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30096309

ABSTRACT

Krebs cycle intermediates traditionally link to oxidative phosphorylation whilst also making key cell components. It is now clear that some of these metabolites also act as signals. Succinate plays an important role in inflammatory, hypoxic, and metabolic signaling, while itaconate (from another Krebs cycle intermediate, cis-aconitate) has an anti-inflammatory role.


Subject(s)
Citric Acid Cycle/physiology , Succinates/metabolism , Succinic Acid/metabolism , Animals , Humans , Signal Transduction
6.
Cell ; 163(7): 1572-4, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26687349

ABSTRACT

York et al. identify a role for decreased cholesterol biosynthesis in virally infected cells as a critical event in the induction of the anti-viral response. The mechanism involves enhanced signaling by STING in the ER membrane in response to the second messenger cGAMP, promoting increased transcription of type I interferons. The authors suggest that a "lipid code" is being sensed by STING to allow it to signal.


Subject(s)
Cholesterol/metabolism , Immunity, Innate , Interferon-gamma/metabolism , Signal Transduction , Animals , Humans
7.
Nature ; 626(7998): 271-279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326590

ABSTRACT

Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.


Subject(s)
Inflammation , Mitochondria , Models, Biological , Symbiosis , Humans , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Diet/adverse effects , Homeostasis , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Nucleic Acids/metabolism , Obesity/complications , Obesity/metabolism , Obesity/pathology , Phospholipids/metabolism , Reactive Oxygen Species/metabolism , Symbiosis/physiology , Animals
9.
Nat Immunol ; 18(5): 488-498, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28418387

ABSTRACT

Recent evidence indicates that mitochondria lie at the heart of immunity. Mitochondrial DNA acts as a danger-associated molecular pattern (DAMP), and the mitochondrial outer membrane is a platform for signaling molecules such as MAVS in RIG-I signaling, and for the NLRP3 inflammasome. Mitochondrial biogenesis, fusion and fission have roles in aspects of immune-cell activation. Most important, Krebs cycle intermediates such as succinate, fumarate and citrate engage in processes related to immunity and inflammation, in both innate and adaptive immune cells. These discoveries are revealing mitochondrial targets that could potentially be exploited for therapeutic gain in inflammation and cancer.


Subject(s)
Adaptive Immunity , Citric Acid Cycle/immunology , Immunity, Innate , Mitochondria/immunology , Mitochondrial Membranes/immunology , Animals , DEAD Box Protein 58/metabolism , Energy Metabolism , Humans , Immunomodulation , Inflammasomes/metabolism , Lymphocyte Activation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Immunologic , Receptors, Pattern Recognition/metabolism , Signal Transduction
10.
Nature ; 615(7952): 490-498, 2023 03.
Article in English | MEDLINE | ID: mdl-36890227

ABSTRACT

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Subject(s)
Fumarate Hydratase , Interferon-beta , Macrophages , Mitochondria , RNA, Mitochondrial , Humans , Argininosuccinate Synthase/metabolism , Argininosuccinic Acid/metabolism , Aspartic Acid/metabolism , Cell Respiration , Cytosol/metabolism , Fumarate Hydratase/antagonists & inhibitors , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Fumarates/metabolism , Interferon-beta/biosynthesis , Interferon-beta/immunology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Lupus Erythematosus, Systemic/enzymology , Macrophages/enzymology , Macrophages/immunology , Macrophages/metabolism , Membrane Potential, Mitochondrial , Metabolomics , Mitochondria/genetics , Mitochondria/metabolism , RNA, Mitochondrial/metabolism
11.
Nat Immunol ; 22(4): 398-399, 2021 04.
Article in English | MEDLINE | ID: mdl-33767428
12.
Mol Cell ; 78(5): 814-823, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32333837

ABSTRACT

Metabolites have functions in the immune system independent of their conventional roles as sources or intermediates in biosynthesis and bioenergetics. We are still in the pioneering phase of gathering information about the functions of specific metabolites in immunoregulation. In this review, we cover succinate, itaconate, α-ketoglutarate, and lactate as examples. Each of these metabolites has a different story of how their immunoregulatory functions were discovered and how their roles in the complex process of inflammation were revealed. Parallels and interactions are emerging between metabolites and cytokines, well-known immunoregulators. We depict molecular mechanisms by which metabolites prime cellular and often physiological changes focusing on intra- and extra-cellular activities and signaling pathways. Possible therapeutic opportunities for immune and inflammatory diseases are emerging.


Subject(s)
Carboxylic Acids/immunology , Carboxylic Acids/metabolism , Immunity/immunology , Animals , Citric Acid Cycle , Cytokines/metabolism , Energy Metabolism , Humans , Immunity/physiology , Inflammation/metabolism , Ketoglutaric Acids/immunology , Ketoglutaric Acids/metabolism , Lactic Acid/immunology , Lactic Acid/metabolism , Signal Transduction , Succinates/immunology , Succinates/metabolism , Succinic Acid/immunology , Succinic Acid/metabolism
13.
Immunol Rev ; 323(1): 276-287, 2024 May.
Article in English | MEDLINE | ID: mdl-38465724

ABSTRACT

Over the past decade, there has been a surge in discoveries of how metabolic pathways regulate immune cell function in health and disease, establishing the field of immunometabolism. Specifically, pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, and those involving lipid metabolism have been implicated in regulating immune cell function. Viral infections cause immunometabolic changes which lead to antiviral immunity, but little is known about how metabolic changes regulate interferon responses. Interferons are critical cytokines in host defense, rapidly induced upon pathogen recognition, but are also involved in autoimmune diseases. This review summarizes how metabolic change impacts interferon production. We describe how glycolysis, lipid metabolism (specifically involving eicosanoids and cholesterol), and the TCA cycle-linked intermediates itaconate and fumarate impact type I interferons. Targeting these metabolic changes presents new therapeutic possibilities to modulate type I interferons during host defense or autoimmune disorders.


Subject(s)
Interferon Type I , Lipid Metabolism , Humans , Interferon Type I/metabolism , Animals , Glycolysis , Citric Acid Cycle , Virus Diseases/immunology , Virus Diseases/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Signal Transduction , Energy Metabolism
15.
Trends Immunol ; 45(4): 259-273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503657

ABSTRACT

The electron transport chain (ETC) couples electron transfer with proton pumping to generate ATP and it also regulates particular innate and adaptive immune cell function. While NLRP3 inflammasome activation was initially linked to reactive oxygen species (ROS) produced from Complexes I and III, recent research suggests that an intact ETC fueling ATP is needed. Complex II may be responsible for Th1 cell proliferation and in some cases, effector cytokine production. Complex III is required for regulatory T (Treg) cell function, while oxidative phosphorylation (OXPHOS) and Complexes I, IV, and V sustain proliferation and antibody production in B lymphocytes, with OXPHOS also being required for B regulatory (Breg) cell function. Despite challenges, the ETC shows therapeutic targeting potential for immune-related diseases and in immuno-oncology.


Subject(s)
Mitochondria , Oxidative Phosphorylation , Humans , Mitochondria/metabolism , Electron Transport , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism
16.
Cell ; 151(3): 471-3, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23101619

ABSTRACT

A surprising link between innate immunity and nuclear reprogramming is reported by Lee et al.; this discovery may boost the efficiency of stem cell production.

17.
Trends Immunol ; 44(8): 574-576, 2023 08.
Article in English | MEDLINE | ID: mdl-37423881

ABSTRACT

PANoptosomes are large cell death-inducing complexes that drive a type of cell death called PANoptosis during infection and inflammation. Sundaram and colleagues recently identified NLRP12 as a PANoptosome that induces PANoptosis in response to heme, TNF, and pathogen-associated molecular patterns (PAMPs), indicating a role for NLRP12 in hemolytic and inflammatory diseases.


Subject(s)
Heme , Intracellular Signaling Peptides and Proteins , Humans , Inflammation
18.
J Immunol ; 212(1): 13-23, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37991425

ABSTRACT

4-Octyl itaconate (4-OI) is a derivative of the Krebs cycle-derived metabolite itaconate and displays an array of antimicrobial and anti-inflammatory properties through modifying cysteine residues within protein targets. We have found that 4-OI significantly reduces the production of eosinophil-targeted chemokines in a variety of cell types, including M1 and M2 macrophages, Th2 cells, and A549 respiratory epithelial cells. Notably, the suppression of these chemokines in M1 macrophages was found to be NRF2-dependent. In addition, 4-OI can interfere with IL-5 signaling and directly affect eosinophil differentiation. In a model of eosinophilic airway inflammation in BALB/c mice, 4-OI alleviated airway resistance and reduced eosinophil recruitment to the lungs. Our findings suggest that itaconate derivatives could be promising therapeutic agents for the treatment of eosinophilic asthma.


Subject(s)
Eosinophils , Pulmonary Eosinophilia , Mice , Animals , Pulmonary Eosinophilia/drug therapy , Chemokines , Inflammation/drug therapy
19.
Cell ; 147(2): 259-61, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22000004

ABSTRACT

The innate immune sensor RIG-I responds to infection by binding to viral double-stranded RNA (dsRNA). In this issue of Cell, Kowalinski et al. (2011) and Luo et al. (2011) reveal the structure of RIG-I, and in combination with functional analyses, they show how RIG-I recognizes viral RNA to initiate signaling and a type I interferon response.

20.
Immunity ; 44(2): 368-79, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26885859

ABSTRACT

Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-γ) receptor signaling. Mal-dependent IFN-γ receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-γ signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-γ-related diseases including autoimmunity and cancer.


Subject(s)
Interferon-gamma/metabolism , Macrophages/physiology , Membrane Glycoproteins/metabolism , Mycobacterium tuberculosis/immunology , Receptors, Interleukin-1/metabolism , Tuberculosis, Pulmonary/immunology , Animals , Autophagy/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , HEK293 Cells , Humans , Immunity, Innate/genetics , MAP Kinase Signaling System/genetics , Macrophages/microbiology , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Polymorphism, Genetic , Protein Binding/genetics , RNA, Small Interfering/genetics , Receptors, Interferon/metabolism , Receptors, Interleukin-1/genetics , Tuberculosis, Pulmonary/genetics , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL