Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS Biol ; 20(6): e3001656, 2022 06.
Article in English | MEDLINE | ID: mdl-35679339

ABSTRACT

Children with obesity typically have larger left ventricular heart dimensions during adulthood. However, whether this is due to a persistent effect of adiposity extending into adulthood is challenging to disentangle due to confounding factors throughout the lifecourse. We conducted a multivariable mendelian randomization (MR) study to separate the independent effects of childhood and adult body size on 4 magnetic resonance imaging (MRI) measures of heart structure and function in the UK Biobank (UKB) study. Strong evidence of a genetically predicted effect of childhood body size on all measures of adulthood heart structure was identified, which remained robust upon accounting for adult body size using a multivariable MR framework (e.g., left ventricular end-diastolic volume (LVEDV), Beta = 0.33, 95% confidence interval (CI) = 0.23 to 0.43, P = 4.6 × 10-10). Sensitivity analyses did not suggest that other lifecourse measures of body composition were responsible for these effects. Conversely, evidence of a genetically predicted effect of childhood body size on various other MRI-based measures, such as fat percentage in the liver (Beta = 0.14, 95% CI = 0.05 to 0.23, P = 0.002) and pancreas (Beta = 0.21, 95% CI = 0.10 to 0.33, P = 3.9 × 10-4), attenuated upon accounting for adult body size. Our findings suggest that childhood body size has a long-term (and potentially immutable) influence on heart structure in later life. In contrast, effects of childhood body size on other measures of adulthood organ size and fat percentage evaluated in this study are likely explained by the long-term consequence of remaining overweight throughout the lifecourse.


Subject(s)
Adiposity , Mendelian Randomization Analysis , Adiposity/genetics , Adult , Body Mass Index , Body Size/genetics , Child , Genome-Wide Association Study , Humans , Obesity
2.
Arterioscler Thromb Vasc Biol ; 42(3): 362-365, 2022 03.
Article in English | MEDLINE | ID: mdl-35045726

ABSTRACT

BACKGROUND: In this study, we investigated the capability of polygenic risk scores to stratify a cohort of young individuals into risk deciles based on 10 different cardiovascular traits and circulating biomarkers. METHODS: We first conducted large-scale genome-wide association studies using data on adults (mean age 56.5 years) enrolled in the UK Biobank study (n=393 193 to n=461 460). Traits and biomarkers analyzed were body mass index, systolic blood pressure, diastolic blood pressure, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoprotein B, apolipoprotein A-I, C-reactive protein and vitamin D. Findings were then leveraged to build whole genome polygenic risk scores in participants from the Avon Longitudinal Study of Parents and Children (mean age, 9.9 years) which were used to stratify this cohort into deciles in turn and analyzed against their respective traits. RESULTS: For each of the 10 different traits assessed, we found strong evidence of an incremental trend across deciles (all P<0.0001). Large differences were identified when comparing top and bottom deciles; for example, using the apolipoprotein B polygenic risk scores there was a mean difference of 13.2 mg/dL for this established risk factor of coronary heart disease in later life. CONCLUSIONS: Although the use of polygenic prediction in a clinical setting may currently be premature, our findings suggest they are becoming increasingly powerful as a means of predicting complex trait variation at an early stage in the lifecourse.


Subject(s)
Biomarkers/blood , Cardiometabolic Risk Factors , Multifactorial Inheritance , Biological Specimen Banks , Child , Cohort Studies , Female , Genetic Variation , Genome-Wide Association Study , Humans , Linear Models , Linkage Disequilibrium , Longitudinal Studies , Male , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL