Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Cell ; 65(2): 247-259, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-27986371

ABSTRACT

Monoubiquitination and deubiquitination of FANCD2:FANCI heterodimer is central to DNA repair in a pathway that is defective in the cancer predisposition syndrome Fanconi anemia (FA). The "FA core complex" contains the RING-E3 ligase FANCL and seven other essential proteins that are mutated in various FA subtypes. Here, we purified recombinant FA core complex to reveal the function of these other proteins. The complex contains two spatially separate FANCL molecules that are dimerized by FANCB and FAAP100. FANCC and FANCE act as substrate receptors and restrict monoubiquitination to the FANCD2:FANCI heterodimer in only a DNA-bound form. FANCA and FANCG are dispensable for maximal in vitro ubiquitination. Finally, we show that the reversal of this reaction by the USP1:UAF1 deubiquitinase only occurs when DNA is disengaged. Our work reveals the mechanistic basis for temporal and spatial control of FANCD2:FANCI monoubiquitination that is critical for chemotherapy responses and prevention of Fanconi anemia.


Subject(s)
Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia/metabolism , Ubiquitination , Cell Line , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/metabolism , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group C Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group E Protein/metabolism , Fanconi Anemia Complementation Group G Protein/metabolism , Fanconi Anemia Complementation Group L Protein/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Humans , Inhibitor of Differentiation Protein 2/metabolism , Multiprotein Complexes , Nuclear Proteins/metabolism , Protein Binding , Protein Multimerization , Recombinant Proteins/metabolism , Substrate Specificity , Time Factors , Transfection , Ubiquitin-Specific Proteases/metabolism
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35115399

ABSTRACT

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Subject(s)
Bloom Syndrome/genetics , DNA, Cruciform/genetics , Genomic Instability/genetics , Alleles , Carrier Proteins/genetics , Cell Line , DNA Topoisomerases, Type I/genetics , Humans , Mutation/genetics , Protein Binding/genetics , RecQ Helicases/genetics , Recombination, Genetic/genetics , Solubility
3.
Nat Commun ; 13(1): 1015, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197472

ABSTRACT

Evidence that long non-coding RNAs (lncRNAs) participate in DNA repair is accumulating, however, whether they can control DNA repair pathway choice is unknown. Here we show that the small Cajal body-specific RNA 2 (scaRNA2) can promote HR by inhibiting DNA-dependent protein kinase (DNA-PK) and, thereby, NHEJ. By binding to the catalytic subunit of DNA-PK (DNA-PKcs), scaRNA2 weakens its interaction with the Ku70/80 subunits, as well as with the LINP1 lncRNA, thereby preventing catalytic activation of the enzyme. Inhibition of DNA-PK by scaRNA2 stimulates DNA end resection by the MRN/CtIP complex, activation of ATM at DNA lesions and subsequent repair by HR. ScaRNA2 is regulated in turn by WRAP53ß, which binds this RNA, sequestering it away from DNA-PKcs and allowing NHEJ to proceed. These findings reveal that RNA-dependent control of DNA-PK catalytic activity is involved in regulating whether the cell utilizes NHEJ or HR.


Subject(s)
Protein Kinases , RNA , DNA/genetics , DNA/metabolism , DNA End-Joining Repair , DNA Repair , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Protein Kinases/metabolism
4.
Cell Rep ; 41(10): 111749, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476850

ABSTRACT

Co-transcriptional R loops arise from stalling of RNA polymerase, leading to the formation of stable DNA:RNA hybrids. Unresolved R loops promote genome instability but are counteracted by helicases and nucleases. Here, we show that branchpoint translocases are a third class of R-loop-displacing enzyme in vitro. In cells, deficiency in the Fanconi-anemia-associated branchpoint translocase FANCM causes R-loop accumulation, particularly after treatment with DNA:RNA-hybrid-stabilizing agents. This correlates with FANCM localization at R-loop-prone regions of the genome. Moreover, other branchpoint translocases associated with human disease, such as SMARCAL1 and ZRANB3, and those from lower organisms can also remove R loops in vitro. Branchpoint translocases are more potent than helicases in resolving R loops, indicating their evolutionary important role in R-loop suppression. In human cells, FANCM, SMARCAL1, and ZRANB3 depletion causes additive effects on R-loop accumulation and DNA damage. Our work reveals a mechanistic basis for R-loop displacement that is linked to genome stability.


Subject(s)
R-Loop Structures , RNA , Humans , DNA Helicases/genetics
5.
Nucleus ; 10(1): 221-230, 2019 12.
Article in English | MEDLINE | ID: mdl-31663812

ABSTRACT

Break-induced replication is a specific type of DNA repair that has a co-opted role in telomere extension by telomerase-negative cancer cells. This Alternative Lengthening of Telomeres (or 'ALT') is required for viability in approximately 10% of all carcinomas, but up to 50% of the soft-tissue derived sarcomas. In several recent studies, we and others demonstrate that expression and activity of FANCM, a DNA translocase protein, is essential for the viability of ALT-associated cancers. Here we provide a summary of how and why FANCM depletion leads to deletion of ALT-controlled cancers, predominantly through a hyper-activation of break-induced replication. We also discuss how FANCM can and has been targeted in cancer cell killing, including potential opportunities in ALT and other genetic backgrounds.


Subject(s)
DNA Helicases/antagonists & inhibitors , DNA Helicases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Telomere Homeostasis/drug effects , DNA Helicases/deficiency , DNA Repair/drug effects , DNA Replication/drug effects , Humans , Neoplasms/metabolism , Neoplasms/pathology
6.
Nat Commun ; 10(1): 5345, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31745078

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Commun ; 10(1): 2252, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138797

ABSTRACT

The collapse of stalled replication forks is a major driver of genomic instability. Several committed mechanisms exist to resolve replication stress. These pathways are particularly pertinent at telomeres. Cancer cells that use Alternative Lengthening of Telomeres (ALT) display heightened levels of telomere-specific replication stress, and co-opt stalled replication forks as substrates for break-induced telomere synthesis. FANCM is a DNA translocase that can form independent functional interactions with the BLM-TOP3A-RMI (BTR) complex and the Fanconi anemia (FA) core complex. Here, we demonstrate that FANCM depletion provokes ALT activity, evident by increased break-induced telomere synthesis, and the induction of ALT biomarkers. FANCM-mediated attenuation of ALT requires its inherent DNA translocase activity and interaction with the BTR complex, but does not require the FA core complex, indicative of FANCM functioning to restrain excessive ALT activity by ameliorating replication stress at telomeres. Synthetic inhibition of FANCM-BTR complex formation is selectively toxic to ALT cancer cells.


Subject(s)
Carrier Proteins/metabolism , DNA Helicases/metabolism , DNA Topoisomerases, Type I/metabolism , DNA-Binding Proteins/metabolism , Neoplasms/metabolism , Nuclear Proteins/metabolism , RecQ Helicases/metabolism , Telomere Homeostasis , Telomere/metabolism , Cell Line, Tumor , DNA Replication , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL