Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Nat Immunol ; 17(3): 304-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26829766

ABSTRACT

The role of anergy, an acquired state of T cell functional unresponsiveness, in natural peripheral tolerance remains unclear. In this study, we found that anergy was selectively induced in fetal antigen-specific maternal CD4(+) T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4(+) T cells, enriched for self antigen-specific T cell antigen receptors, was also present in healthy hosts. Neuropilin-1 expression in anergic conventional CD4(+) T cells was associated with hypomethylation of genes related to thymic regulatory T cells (Treg cells), and this correlated with their ability to differentiate into Foxp3(+) Treg cells that suppressed immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity but also it generates the precursors for peripheral Treg cell differentiation.


Subject(s)
Autoimmunity/immunology , Cell Differentiation/immunology , Clonal Anergy/immunology , Histocompatibility, Maternal-Fetal/immunology , Peripheral Tolerance/immunology , Precursor Cells, T-Lymphoid/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Arthritis, Experimental/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Forkhead Transcription Factors/immunology , Genes, T-Cell Receptor alpha , Immunoblotting , Male , Mice , Mice, Knockout , Neuropilin-1/metabolism , Pregnancy , Receptors, Antigen, T-Cell/immunology , Reverse Transcriptase Polymerase Chain Reaction , Self Tolerance , Thymocytes/immunology
2.
Mol Genet Metab ; 135(3): 193-205, 2022 03.
Article in English | MEDLINE | ID: mdl-35165009

ABSTRACT

BACKGROUND: Adult immunocompetent male C57Bl/6 mucopolysaccharidosis, type I (MPSI) mice develop aortic insufficiency (AI), dilated ascending aortas and decreased cardiac function, findings not observed in immune incompetent adult male NSG MPSI mice. We sought to determine why. METHODS: Cardiac ultrasound measurements of ascending aorta and left ventricular dimensions and Doppler interrogation for AI were performed in 6-month-old male B6 MPSI (N = 12), WT (N = 6), NSG MPSI (N = 8), NSG (N = 6) mice. Urinary glycosaminoglycans, RNA sequencing with quantitative PCR were performed and aortic pathology assessed by routine and immunohistochemical staining on subsets of murine aortas. RESULTS: Ascending aortic diameters were significantly greater, left ventricular function significantly decreased, and AI significantly more frequent in B6 MPSI mice compared to NSG MPSI mice (p < 0.0001, p = 0.008 and p = 0.02, respectively); NSG and B6 WT mice showed no changes. Urinary glycosaminoglycans were significantly greater in B6 and NSG MPSI mice and both were significantly elevated compared to WT controls (p = 0.003 and p < 0.0001, respectively). By RNA sequencing, all 11 components of the inflammasome pathway were upregulated in B6 MUT, but only Aim2 and Ctsb in NSG MUT mice and none in WT controls. Both B6 and NSG MUT mice demonstrated variably-severe intramural inflammation, vacuolated cells, elastin fragmentation and disarray, and intense glycosaminoglycans on histological staining. B6 MPSI mice demonstrated numerous medial MAC2+ macrophages and adventitial CD3+ T-cells while MAC2+ macrophages were sparse and CD3+ T-cells absent in NSG MPSI mice. CONCLUSIONS: Aortic dilation, AI and decreased cardiac function occur in immunocompetent B6 MPSI male mice but not in immune incompetent NSG MPSI mice, unrelated to GAG excretion, upregulation of Ctsb, or routine histologic appearance. Upregulation of all components of the inflammasome pathway in B6 MUT, but not NSG MUT mice, and abundant medial MAC2 and adventitial CD3 infiltrates in B6, but not NSG, MPSI aortas differentiated the two strains. These results suggest that the innate and adaptive immune systems play a role in these cardiac findings which may be relevant to human MPSI.


Subject(s)
Aortic Valve Insufficiency , Mucopolysaccharidosis I , Animals , Dilatation , Glycosaminoglycans , Humans , Inflammasomes , Macrophages , Male , Mice , Mice, Inbred C57BL
3.
Hepatology ; 74(6): 3235-3248, 2021 12.
Article in English | MEDLINE | ID: mdl-34322899

ABSTRACT

BACKGROUND AND AIMS: Sirtuin 1 (SIRT1) is a complex NAD+ -dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a mechanism of SIRT1-induced destabilization of primary cilia in cholangiocarcinoma (CCA). APPROACH AND RESULTS: A significant overexpression of SIRT1 was detected in human CCA specimens and CCA cells including HuCCT1, KMCH, and WITT1 as compared with normal cholangiocytes (H69 and NHC). Small interfering RNA (siRNA)-mediated knockdown of SIRT1 in HuCCT1 cells induced cilia formation, whereas overexpression of SIRT1 in normal cholangiocytes suppressed ciliary expression. Activity of SIRT1 was regulated by presence of NAD+ in CCA cells. Inhibition of NAD -producing enzyme nicotinamide phosphoribosyl transferase increased ciliary length and frequency in CCA cells and in SIRT1-overexpressed H69 cells. Furthermore, we also noted that SIRT1 induces the proteasomal mediated degradation of ciliary proteins, including α-tubulin, ARL13B, and KIF3A. Moreover, overexpression of SIRT1 in H69 and NHC cells significantly induced cell proliferation and, conversely, SIRT1 inhibition in HuCCT1 and KMCH cells using siRNA or sirtinol reduced cell proliferation. In an orthotopic transplantation rat CCA model, the SIRT1 inhibitor sirtinol reduced tumor size and tumorigenic proteins (glioma-associated oncogene 1, phosphorylated extracellular signal-regulated kinase, and IL-6) expression. CONCLUSIONS: In conclusion, these results reveal the tumorigenic role of SIRT1 through modulation of primary cilia formation and provide the rationale for developing therapeutic approaches for CCA using SIRT1 as a target.


Subject(s)
Bile Duct Neoplasms/metabolism , Cholangiocarcinoma/metabolism , Cilia/metabolism , Sirtuin 1/metabolism , Animals , Bile Duct Neoplasms/enzymology , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Cholangiocarcinoma/enzymology , Cholangiocarcinoma/pathology , Cilia/pathology , Humans , Male , Neoplasm Transplantation , Rats , Rats, Inbred F344
4.
Vet Pathol ; 59(5): 759-767, 2022 09.
Article in English | MEDLINE | ID: mdl-35674149

ABSTRACT

Rhabdoid meningioma is a rare type of meningeal neoplasm in humans. This study reports the clinical, pathological, and ultrastructural features of 4 cases of canine meningioma with rhabdoid features. The cases were female and 8 to 12 years of age. Biopsies from complete surgical resections were examined for all cases. The whole brain with tumor recurrence was collected at necropsy in 2 dogs. Histologically, the tumors consisted of discohesive sheets of oval-polygonal cells with abundant eosinophilic cytoplasm and occasional paranuclear hyaline-like inclusions. Cells were intensely immunopositive for vimentin, negative for melan A and S100 protein in all cases, and showed variable immunolabeling for cytokeratin in 2 cases. Focal glial fibrillary acidic protein (GFAP)-immunopositive cells were present in 1 case. Ultrastructurally, the rhabdoid cells in case 1 contained prominent cytoplasmic whorls of intermediate filaments, recapitulating the ultrastructural features of rhabdoid meningioma in humans. In cases 2 and 3, the meningioma cells contained interdigitating cell processes folded in a maze-like fashion resembling rhabdoid-like meningioma in humans. In case 4, the voluminous cytoplasm contained many round-to-flattened mitochondria admixed with rough endoplasmic reticulum, indicating a predominant oncocytic differentiation and not the rhabdoid differentiation suggested by light microscopy. Thus, rhabdoid morphology occurs in different types of meningiomas, and ultrastructural findings are essential for a correct diagnosis.


Subject(s)
Dog Diseases , Meningeal Neoplasms , Meningioma , Rhabdoid Tumor , Animals , Dog Diseases/diagnosis , Dogs , Female , Humans , Immunohistochemistry , Male , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/veterinary , Meningioma/diagnosis , Meningioma/veterinary , Neoplasm Recurrence, Local/veterinary , Rhabdoid Tumor/diagnosis , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/veterinary
5.
Chem Res Toxicol ; 34(3): 723-732, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33629582

ABSTRACT

Tobacco smoke is a complex mixture of chemicals, many of which are toxic and carcinogenic. Hazard assessments of tobacco smoke exposure have predominantly focused on either single chemical exposures or the more complex mixtures of tobacco smoke or its fractions. There are fewer studies exploring interactions between specific tobacco smoke chemicals. Aldehydes such as formaldehyde and acetaldehyde were hypothesized to enhance the carcinogenic properties of the human carcinogen, 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) through a variety of mechanisms. This hypothesis was tested in the established NNK-induced A/J mouse lung tumor model. A/J mice were exposed to NNK (intraperitoneal injection, 0, 2.5, or 7.5 µmol in saline) in the presence or absence of acetaldehyde (0 or 360 ppmv) or formaldehyde (0 or 17 ppmv) for 3 h in a nose-only inhalation chamber, and lung tumors were counted 16 weeks later. Neither aldehyde by itself induced lung tumors. However, mice receiving both NNK and acetaldehyde or formaldehyde had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that aldehydes may increase the severity of NNK-induced lung adenomas. The aldehyde coexposure did not affect the levels of NNK-derived DNA adduct levels. Similar studies tested the ability of a 3 h nose-only carbon dioxide (0, 5, 10, or 15%) coexposure to influence lung adenoma formation by NNK. While carbon dioxide alone was not carcinogenic, it significantly increased the number of NNK-derived lung adenomas without affecting NNK-derived DNA damage. These studies indicate that the chemicals in tobacco smoke work together to form a potent lung carcinogenic mixture.


Subject(s)
Aldehydes/toxicity , Carbon Dioxide/toxicity , Carcinogens/toxicity , Lung Neoplasms/chemically induced , Nitrosamines/toxicity , Administration, Inhalation , Aldehydes/administration & dosage , Aldehydes/chemistry , Animals , Carbon Dioxide/administration & dosage , Carbon Dioxide/chemistry , Carcinogens/administration & dosage , Carcinogens/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Lung Neoplasms/metabolism , Mice , Molecular Structure , Nitrosamines/administration & dosage , Nicotiana/chemistry
6.
Mol Ther ; 28(6): 1442-1454, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32278382

ABSTRACT

Our previous study delivered zinc finger nucleases to treat mice with mucopolysaccharidosis type I (MPS I), resulting in a phase I/II clinical trial (ClinicalTrials.gov: NCT02702115). However, in the clinical trial, the efficacy needs to be improved due to the low transgene expression level. To this end, we designed a proprietary system (PS) gene editing approach with CRISPR to insert a promoterless α-l-iduronidase (IDUA) cDNA sequence into the albumin locus of hepatocytes. In this study, adeno-associated virus 8 (AAV8) vectors delivering the PS gene editing system were injected into neonatal and adult MPS I mice. IDUA enzyme activity in the brain significantly increased, while storage levels were normalized. Neurobehavioral tests showed that treated mice had better memory and learning ability. Also, histological analysis showed efficacy reflected by the absence of foam cells in the liver and vacuolation in neuronal cells. No vector-associated toxicity or increased tumorigenesis risk was observed. Moreover, no off-target effects were detected through the unbiased genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) analysis. In summary, these results showed the safety and efficacy of the PS in treating MPS I and paved the way for clinical studies. Additionally, as a therapeutic platform, the PS has the potential to treat other lysosomal diseases.


Subject(s)
Gene Editing/methods , Gene Expression , Genetic Therapy , Iduronidase/genetics , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Transgenes , Animals , Brain/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Dependovirus/genetics , Disease Models, Animal , Enzyme Activation , Gene Dosage , Gene Order , Gene Transfer Techniques , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors/genetics , Humans , Liver/metabolism , Liver/pathology , Mice , Mucopolysaccharidosis I/metabolism , RNA, Guide, Kinetoplastida , Treatment Outcome
7.
Vet Pathol ; 58(5): 945-951, 2021 09.
Article in English | MEDLINE | ID: mdl-34219560

ABSTRACT

Gliomas are relatively common tumors in aged dogs (especially brachycephalic breeds), and the dog is proving to be useful as a translational model for humans with brain tumors. Hitherto, there is relatively little prognostic data for canine gliomas and none on outcome related to specific histological features. Histologic sections of tumor biopsies from 33 dogs with glioma treated with surgical resection and immunotherapy and 21 whole brains obtained postmortem were reviewed. Tumors were diagnosed as astrocytic, oligodendroglial, or undefined glioma using Comparative Brain Tumor Consortium criteria. Putative features of malignancy were evaluated, namely, mitotic counts, glomeruloid vascularization, and necrosis. For biopsies, dogs with astrocytic tumors lived longer than those with oligodendroglial or undefined tumor types (median survival 743, 205, and 144 days, respectively). Dogs with low-grade gliomas lived longer than those with high-grade gliomas (median survival 734 and 194 days, respectively). Based on analysis of tumor biopsies, low mitotic counts, absence of glomeruloid vascularization, and absence of necrosis correlated with increased survival (median 293, 223, and 220 days, respectively), whereas high mitotic counts, glomeruloid vascularization, and necrosis correlated with poor survival (median 190, 170, and 154 days, respectively). Mitotic count was the only histological feature in biopsy samples that significantly correlated with survival (P < .05). Whole-brain analyses for those same histologic features had similar and more robust correlations, and were statistically significant for all features (P < .05). The small size of biopsy samples may explain differences between biopsy and whole-brain tumor data. These findings will allow more accurate prognosis for gliomas.


Subject(s)
Astrocytoma , Brain Neoplasms , Dog Diseases , Glioma , Animals , Astrocytoma/veterinary , Brain Neoplasms/veterinary , Dog Diseases/diagnosis , Dogs , Glioma/veterinary , Prognosis , Retrospective Studies
8.
Gene Ther ; 27(5): 226-236, 2020 05.
Article in English | MEDLINE | ID: mdl-31896760

ABSTRACT

The GM2-gangliosidoses are neurological diseases causing premature death, thus developing effective treatment protocols is urgent. GM2-gangliosidoses result from deficiency of a lysosomal enzyme ß-hexosaminidase (Hex) and subsequent accumulation of GM2 gangliosides. Genetic changes in HEXA, encoding the Hex α subunit, or HEXB, encoding the Hex ß subunit, causes Tay-Sachs disease and Sandhoff disease, respectively. Previous studies have showed that a modified human Hex µ subunit (HEXM) can treat both Tay-Sachs and Sandhoff diseases by forming a homodimer to degrade GM2 gangliosides. To this end, we applied this HEXM subunit in our PS813 gene editing system to treat neonatal Sandhoff mice. Through AAV delivery of the CRISPR system, a promoterless HEXM cDNA will be integrated into the albumin safe harbor locus, and lysosomal enzyme will be expressed and secreted from edited hepatocytes. 4 months after the i.v. of AAV vectors, plasma MUGS and MUG activities reached up to 144- and 17-fold of wild-type levels (n = 10, p < 0.0001), respectively. More importantly, MUGS and MUG activities in the brain also increased significantly compared with untreated Sandhoff mice (p < 0.001). Further, HPLC-MS/MS analysis showed that GM2 gangliosides in multiple tissues, except the brain, of treated mice were reduced to normal levels. Rotarod analysis showed that coordination and motor memory of treated mice were improved (p < 0.05). Histological analysis of H&E stained tissues showed reduced cellular vacuolation in the brain and liver of treated Sandhoff mice. These results demonstrate the potential of developing a treatment of in vivo genome editing for Tay-Sachs and Sandhoff patients.


Subject(s)
Sandhoff Disease , Tay-Sachs Disease , Animals , Disease Models, Animal , Gene Editing , Humans , Mice , Sandhoff Disease/genetics , Sandhoff Disease/therapy , Tandem Mass Spectrometry , Tay-Sachs Disease/genetics , Tay-Sachs Disease/therapy , beta-N-Acetylhexosaminidases/genetics
9.
Chem Res Toxicol ; 33(7): 1980-1988, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32476407

ABSTRACT

Our early studies demonstrated an impressive chemopreventive efficacy of dihydromethysticin (DHM), unique in kava, against tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice in which DHM was supplemented in the diet. The current work was carried out to validate the efficacy, optimize the dosing schedule, and further elucidate the mechanisms using oral bolus dosing of DHM. The results demonstrated a dose-dependent chemopreventive efficacy of DHM (orally administered 1 h before each of the two NNK intraperitoneal injections, 1 week apart) against NNK-induced lung adenoma formation. Temporally, DHM at 0.8 mg per dose (∼32 mg per kg body weight) exhibited 100% lung adenoma inhibition when given 3 and 8 h before each NNK injection and attained >93% inhibition when dosed at either 1 or 16 h before each NNK injection. The simultaneous treatment (0 h) or 40 h pretreatment (-40 h) decreased lung adenoma burden by 49.8% and 52.1%, respectively. However, post-NNK administration of DHM (1-8 h after each NNK injection) was ineffective against lung tumor formation. In short-term experiments for mechanistic exploration, DHM treatment reduced the formation of NNK-induced O6-methylguanine (O6-mG, a carcinogenic DNA adduct in A/J mice) in the target lung tissue and increased the urinary excretion of NNK detoxification metabolites as judged by the ratio of urinary NNAL-O-gluc to free NNAL, generally in synchrony with the tumor prevention efficacy outcomes in the dose scheduling time-course experiment. Overall, these results suggest DHM as a potential chemopreventive agent against lung tumorigenesis in smokers, with O6-mG and NNAL detoxification as possible surrogate biomarkers.


Subject(s)
Adenoma/prevention & control , Anticarcinogenic Agents/administration & dosage , Butanones/toxicity , Carcinogens/toxicity , Lung Neoplasms/prevention & control , Nitrosamines/toxicity , Pyrones/administration & dosage , Administration, Oral , Animals , Carcinogenesis/drug effects , DNA Adducts/drug effects , Dietary Supplements , Female , Liver/drug effects , Liver/metabolism , Lung/drug effects , Lung/metabolism , Mice, Inbred Strains , Nicotiana
10.
Nature ; 512(7512): 82-6, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25043044

ABSTRACT

'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.


Subject(s)
DNA Copy Number Variations/genetics , Gene Amplification/genetics , Gene Dosage/genetics , Genes, myc/genetics , Oncogene Protein p55(v-myc)/genetics , RNA, Long Noncoding/genetics , Animals , Cell Transformation, Neoplastic , Chromosomes, Human, Pair 8/genetics , Disease Models, Animal , HCT116 Cells , Humans , Mice , Mice, Inbred C57BL , Oncogene Protein p55(v-myc)/metabolism , Phenotype
11.
Mol Genet Metab ; 126(2): 139-150, 2019 02.
Article in English | MEDLINE | ID: mdl-30528226

ABSTRACT

Deficiencies in the lysosomal hydrolase ß-galactosidase (ß-gal) lead to two distinct diseases: the skeletal disease Morquio syndrome type B, and the neurodegenerative disease GM1-gangliosidosis. Utilizing CRISPR-Cas9 genome editing, the mouse ß-gal encoding gene, Glb1, was targeted to generate both models of ß-gal deficiency in a single experiment. For Morquio syndrome type B, the common human missense mutation W273L (position 274 in mice) was introduced into the Glb1 gene (Glb1W274L), while for GM1-gangliosidosis, a 20 bp mutation was generated to remove the catalytic nucleophile of ß-gal (ß-gal-/-). Glb1W274L mice showed a significant reduction in ß-gal enzyme activity (8.4-13.3% of wildtype), but displayed no marked phenotype after one year. In contrast, ß-gal-/- mice were devoid of ß-gal enzyme activity (≤1% of wildtype), resulting in ganglioside accumulation and severe cellular vacuolation throughout the central nervous system (CNS). ß-gal-/- mice also displayed severe neuromotor and neurocognitive dysfunction, and as the disease progressed, the mice became emaciated and succumbed to the disease by 10 months of age. Overall, in addition to generating a novel murine model that phenotypically resembles GM1-gangliosidosis, the first model of ß-galactosidase deficiency with residual enzyme activity has been developed.


Subject(s)
Disease Models, Animal , Gangliosidosis, GM1/pathology , Mucopolysaccharidosis IV/pathology , beta-Galactosidase/metabolism , Animals , CRISPR-Cas Systems , Female , Fluorometry , Gangliosidosis, GM1/genetics , Gene Editing , Mental Status and Dementia Tests , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucopolysaccharidosis IV/genetics , Mutation , Mutation, Missense , Phenotype , beta-Galactosidase/genetics
12.
Appl Environ Microbiol ; 85(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31076433

ABSTRACT

Ehrlichia muris subsp. eauclairensis is recognized as the etiological agent of human ehrlichiosis in Minnesota and Wisconsin. We describe the culture isolation of this organism from a field-collected tick and detail its relationship to other species of Ehrlichia The isolate could be grown in a variety of cultured cell lines and was effectively transmitted between Ixodes scapularis ticks and rodents, with PCR and microscopy demonstrating a broad pattern of dissemination in arthropod and mammalian tissues. Conversely, Amblyomma americanum ticks were not susceptible to infection by the Ehrlichia Histologic sections further revealed that the wild-type isolate was highly virulent for mice and hamsters, causing severe systemic disease that was frequently lethal. A Himar1 transposase system was used to create mCherry- and mKate-expressing EmCRT mutants, which retained the ability to infect rodents and ticks.IMPORTANCE Ehrlichioses are zoonotic diseases caused by intracellular bacteria that are transmitted by ixodid ticks. Here we report the culture isolation of bacteria which are closely related to, or the same as the Ehrlichia muris subsp. eauclairensis, a recently recognized human pathogen. EmCRT, obtained from a tick removed from deer at Camp Ripley, MN, is the second isolate of this subspecies described and is distinctive in that it was cultured directly from a field-collected tick. The isolate's cellular tropism, pathogenic changes caused in rodent tissues, and tick transmission to and from rodents are detailed in this study. We also describe the genetic mutants created from the EmCRT isolate, which are valuable tools for the further study of this intracellular pathogen.


Subject(s)
Ehrlichia/isolation & purification , Ixodes/microbiology , Transformation, Genetic , Animals , Cricetinae/microbiology , Deer/microbiology , Ehrlichia/genetics , Ehrlichia/physiology , Ehrlichia/ultrastructure , Female , Male , Mice/microbiology , Mice, Inbred C57BL , Microscopy, Electron, Transmission/veterinary , Minnesota
13.
Toxicol Pathol ; 47(7): 842-850, 2019 10.
Article in English | MEDLINE | ID: mdl-31426723

ABSTRACT

Furan, a possible human carcinogen, is a product of incomplete combustion and is present in cigarette smoke, engine exhaust, and processed food. Oral administration induces liver toxicity and carcinogenesis in F344 rats and B6C3F1 mice. To assess possible adverse effects from inhalation, A/J mice were nose-only exposed for 3 hours to furan (0, 30, 75, 150, 300, or 600 ppmv) and euthanized after 24 hours, 48 hours, or 1 week. Histopathology evaluation revealed bronchiolar club cell necrosis (diffuse, marked) with airway denudation following exposure to 300 and 600 ppmv furan with evidence of club cell regeneration and partial repair after 1 week. Initial signs of hepatotoxicity were observed in the 150 ppmv furan-exposed group. Acute necrosis and mineralization were observed in livers at 24 and 48 hours with hepatocyte regeneration by 1-week postexposure in mice exposed to 300 and 600 ppmv furan; the 300 ppmv exposed group had multifocal mineralization that evoked a mild granulomatous response. Measurement of urinary furan metabolites confirmed that the mice metabolized furan to the toxic intermediate, cis-2-butene-1,4-dial. These observations indicate that inhaled furan is toxic to lungs with club cells as the target as well as liver.


Subject(s)
Furans/toxicity , Lung/drug effects , Alanine Transaminase/blood , Animals , Female , Furans/administration & dosage , Furans/metabolism , Inhalation Exposure , Liver/drug effects , Liver/pathology , Lung/pathology , Mice , Necrosis
14.
J Carcinog ; 17: 6, 2018.
Article in English | MEDLINE | ID: mdl-30450013

ABSTRACT

BACKGROUND: The golden Syrian hamster is an emerging model organism. To optimize its use, our group has made the first genetically engineered hamsters. One of the first genes that we investigated is KCNQ1 which encodes for the KCNQ1 potassium channel and also has been implicated as a tumor suppressor gene. MATERIALS AND METHODS: We generated KCNQ1 knockout (KO) hamsters by CRISPR/Cas9-mediated gene targeting and investigated the effects of KCNQ1-deficiency on tumorigenesis. RESULTS: By 70 days of age seven of the eight homozygous KCNQ1 KOs used in this study began showing signs of distress, and on necropsy six of the seven ill hamsters had visible cancers, including T-cell lymphomas, plasma cell tumors, hemangiosarcomas, and suspect myeloid leukemias. CONCLUSIONS: None of the hamsters in our colony that were wild-type or heterozygous for KCNQ1 mutations developed cancers indicating that the cancer phenotype is linked to KCNQ1-deficiency. This study is also the first evidence linking KCNQ1-deficiency to blood cancers.

15.
Toxicol Pathol ; 46(2): 184-192, 2018 02.
Article in English | MEDLINE | ID: mdl-29390940

ABSTRACT

Lung cancer is the most common cause of cancer-related deaths in humans worldwide. There is strong evidence that the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) play an important role in carcinogenesis caused by tobacco products. NNK and racemic NNAL are reported to induce lung and pancreatic tumors in rats. The carcinogenicity in Fischer 344 rats of NNK, NNAL, and its enantiomers ( R)-NNAL and ( S)-NNAL has been studied recently, and all test compounds induced significant numbers of lung tumors. We report here the detailed histopathological and immunohistochemical characterization of these tumors and their aggressive nature as shown by their metastasis locally and to the pancreas. The spectrum of treatment-related histopathological findings comprised pulmonary alveolar/bronchiolar (A/B) epithelial hyperplasia, A/B adenomas, and A/B carcinomas. A/B carcinomas frequently exhibited local invasion/metastasis within the mediastinum and thoracic cavity and distant metastasis to the pancreas that was confirmed by immunohistochemistry using the lung-specific markers prosurfactant protein-C and club (Clara) cell-10. Our observation regarding metastasis to the pancreas was an important, and unexpected, finding in this study both for the experimental animal model and potential human relevance.


Subject(s)
Carcinogens/toxicity , Lung Neoplasms/chemically induced , Nitrosamines/toxicity , Pancreatic Neoplasms/secondary , Animals , Carcinogens/metabolism , Carcinoma/chemically induced , Carcinoma/secondary , Lung Neoplasms/pathology , Male , Nitrosamines/metabolism , Rats , Rats, Inbred F344 , Stereoisomerism , Nicotiana/chemistry
16.
Am J Hematol ; 92(11): 1119-1130, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28699284

ABSTRACT

Elaboration of tumor necrosis factor (TNF) is a very early event in development of ischemia/reperfusion injury pathophysiology. Therefore, TNF may be a prominent mediator of endothelial cell and vascular wall dysfunction in sickle cell anemia, a hypothesis we addressed using NY1DD, S+SAntilles , and SS-BERK sickle transgenic mice. Transfusion experiments revealed participation of abnormally activated blood monocytes exerting an endothelial activating effect, dependent upon Egr-1 in both vessel wall and blood cells, and upon NFκB(p50) in a blood cell only. Involvement of TNF was identified by beneficial impact from TNF blockers, etanercept and infliximab, with less benefit from an IL-1 blocker, anakinra. In therapeutic studies, etanercept ameliorated multiple disturbances of the murine sickle condition: monocyte activation, blood biomarkers of inflammation, low platelet count and Hb, vascular stasis triggered by hypoxia/reoxygenation (but not if triggered by hemin infusion), tissue production of neuro-inflammatory mediators, endothelial activation (monitored by tissue factor and VCAM-1 expression), histopathologic liver injury, and three surrogate markers of pulmonary hypertension (perivascular inflammatory aggregates, arteriolar muscularization, and right ventricular mean systolic pressure). In aggregate, these studies identify a prominent-and possibly dominant-role for an abnormal monocyte-TNF-endothelial activation axis in the sickle context. Its presence, plus the many benefits of etanercept observed here, argue that pilot testing of TNF blockade should be considered for human sickle cell anemia, a challenging but achievable translational research goal.


Subject(s)
Anemia, Sickle Cell/metabolism , Endothelial Cells/metabolism , Monocytes/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Animals , Antibodies, Monoclonal/pharmacology , Biomarkers , Bone Marrow Transplantation , Cell Aggregation/genetics , Cell Aggregation/immunology , Disease Models, Animal , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Endothelium, Vascular/metabolism , Etanercept/pharmacology , Etanercept/therapeutic use , Heart Function Tests , Humans , Inflammation Mediators , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Molecular Targeted Therapy , Monocytes/drug effects , Monocytes/immunology , NF-kappa B/deficiency , NF-kappa B/genetics , Phenotype , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Thromboplastin/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Vascular Cell Adhesion Molecule-1/metabolism
17.
J Biol Chem ; 290(47): 28070-28083, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26378234

ABSTRACT

We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma.


Subject(s)
E2F Transcription Factors/physiology , Gene Expression Regulation/physiology , Osteosarcoma/genetics , Retinoblastoma Protein/physiology , Transcription, Genetic/physiology , Animals , Cell Line, Tumor , Dogs , Humans , Jurkat Cells , Osteosarcoma/pathology , Prognosis
18.
Mol Carcinog ; 55(12): 2291-2303, 2016 12.
Article in English | MEDLINE | ID: mdl-26840761

ABSTRACT

Kava (Piper methysticum Forster) extract and its major kavalactones have been shown to block chemically induced lung tumor initiation in mouse models. Here we evaluated the chemopreventive effect of a kavalactone-rich Kava fraction B (KFB), free of flavokavains, on carcinogenesis in a transgenic adenocarcinoma of mouse prostate (TRAMP) model and characterized the prostate gene expression signatures. Male C57BL/6 TRAMP mice were fed AIN93M diet with or without 0.4% KFB from 8 wk of age. Mice were euthanized at 16 or 28 wk. The growth of the dorsolateral prostate (DLP) lobes in KFB-treated TRAMP mice was inhibited by 66% and 58% at the respective endpoint. Anterior and ventral prostate lobes in KFB-treated TRAMP mice were suppressed by 40% and 49% at 28 wk, respectively. KFB consumption decreased cell proliferation biomarker Ki-67 and epithelial lesion severity in TRAMP DLP, without detectable apoptosis enhancement. Real time qRT-PCR detection of mRNA from DLP at 28 wk showed decreased expression of cell cycle regulatory genes congruent with Ki-67 suppression. Microarray profiling of DLP mRNA indicated that "oncogene-like" genes related to angiogenesis and cell proliferation were suppressed by KFB but tumor suppressor, immunity, muscle/neuro, and metabolism-related genes were upregulated by KFB in both TRAMP and WT DLP. TRAMP mice fed KFB diet developed lower incidence of neuroendocrine carcinomas (NECa) (2 out of 14 mice) than those fed the basal diet (8 out of 14 mice, χ2 = 5.6, P < 0.025). KFB may, therefore, inhibit not only TRAMP DLP epithelial lesions involving multiple molecular pathways, but also NECa. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents, Phytogenic/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Kava/chemistry , Lactones/therapeutic use , Prostate/drug effects , Prostatic Neoplasms/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Female , Lactones/chemistry , Lactones/pharmacology , Male , Mice , Mice, Inbred C57BL , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Transcriptome/drug effects , Transgenes
19.
Clin Exp Pharmacol Physiol ; 43(10): 960-6, 2016 10.
Article in English | MEDLINE | ID: mdl-27297082

ABSTRACT

Previous reports indicate that overexpression of copper/zinc superoxide dismutase (CuZnSOD), an intracellular superoxide (O2 (•-) ) scavenging enzyme, in the brain subfornical organ improves cardiac function in a mouse model of heart failure (HF). A downstream hypothalamic site, the MnPO, may act as a relay centre for O2 (•-) to serve as a mediator in the pathophysiology of HF. To test the hypothesis that elevated O2 (•-) in the MnPO contributes to the pathophysiology of HF and decreased cardiac function, we injected adenovirus encoding CuZnSOD (AdCuZnSOD, n=7) or control empty adenovirus vector (AdEmpty, n=7) into the MnPO of normal rats. Subsequently, rats were subjected to coronary artery ligation to create a myocardial infarct (MI) of the left ventricle. Cardiac function was monitored via echocardiography. Upon completion, rat brains were examined for CuZnSOD expression in MnPO via immunofluorescence and histopathological analyses of cardiac infarct size were conducted. Baseline (EF) ejection fractions (%) of AdCuZnSOD and AdEmpty rats were 73 ± 1 and 71 ± 1, respectively. Two weeks after MI, EF was significantly decreased in both groups of rats (AdCuZnSOD: 51 ± 3, AdEmpty: 46 ± 1). In contrast, by 4 weeks post MI, EF had improved to 64 ± 2 in AdCuZnSOD rats, yet was only 52 ± 1 in AdEmpty rats, and this was accompanied by lower plasma noradrenaline levels in AdCuZnSOD rats (0.49 ± 0.19 ng/mL) compared to AdEmpty rats (1.20 ± 0.32 ng/mL). In conclusion, despite decreases in EF early after MI, overexpression of CuZnSOD in the MnPO was related to an improvement in left ventricular function and concomitant decreased plasma noradrenaline levels 4 weeks post MI.


Subject(s)
Gene Expression Regulation, Enzymologic , Myocardial Infarction/enzymology , Preoptic Area/enzymology , Superoxide Dismutase/biosynthesis , Ventricular Function, Left/physiology , Animals , Male , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Random Allocation , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/genetics
20.
Nucleic Acids Res ; 42(9): 5605-15, 2014 May.
Article in English | MEDLINE | ID: mdl-24589582

ABSTRACT

Accumulating evidence suggests that dormant DNA replication origins play an important role in the recovery of stalled forks. However, their functional interactions with other fork recovery mechanisms have not been tested. We previously reported intrinsic activation of the Fanconi anemia (FA) pathway in a tumor-prone mouse model (Mcm4chaos3) with a 60% loss of dormant origins. To understand this further, we introduced a null allele of Fancc (Fancc-), encoding a member of the FA core complex, into the Mcm4chaos3 background. Primary embryonic fibroblasts double homozygous for Mcm4chaos3 and Fancc- (Mcm4chaos3/chaos3;Fancc-/-) showed significantly increased levels of markers of stalled/collapsed forks compared to either single homozygote. Interestingly, a loss of dormant origins also increased the number of sites in which replication was delayed until prophase, regardless of FA pathway activation. These replication defects coincided with substantially elevated levels of genome instability in Mcm4chaos3/chaos3;Fancc-/- cells, resulting in a high rate of perinatal lethality of Mcm4chaos3/chaos3;Fancc-/- mice and the accelerated tumorigenesis of surviving mice. Together, these findings uncover a specialized role of dormant origins in replication completion while also identifying important functional overlaps between dormant origins and the FA pathway in maintaining fork progression, genome stability, normal development and tumor suppression.


Subject(s)
DNA Replication , Fanconi Anemia Complementation Group C Protein/genetics , Genomic Instability , Animals , Cell Nucleus/genetics , Cells, Cultured , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group C Protein/deficiency , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Micronucleus Tests , Minichromosome Maintenance Complex Component 4/genetics , Minichromosome Maintenance Complex Component 4/metabolism , S Phase Cell Cycle Checkpoints , Signal Transduction , Tumor Suppressor p53-Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL