ABSTRACT
The Wnt and Src pathways are widely used signal transduction pathways in development. ß-catenin is utilized in both pathways, as a signal transducer and a component of the cadherin cell adhesion complex, respectively. A C. elegans ß-catenin HMP-2 is involved in cell adhesion, but its signaling role has been unknown. Here, we report that in early embryogenesis HMP-2 acts as a signaling molecule in the Src signal. During early embryogenesis in C. elegans, the Wnt and Src pathways are redundantly involved in endoderm induction at the four-cell stage and spindle orientation in an ABar blastomere. RNAi experiments demonstrated that HMP-2 functions in the Src pathway, but in parallel with the Wnt pathway in these processes. HMP-2 localized at the cell boundaries and nuclei, and its localization at cell boundaries was negatively regulated by SRC-1. In addition, HMP-2 was Tyr-phosphorylated in a SRC-1-dependent manner in vivo. Taken together, we propose that HMP-2 functions downstream of the Src signaling pathway and contribute to endoderm induction and ABar spindle orientation, in parallel with the Wnt signaling pathway.