Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 56(9): 2121-2136.e6, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37659412

ABSTRACT

Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aß clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Genetic Association Studies , Microglia , Phagocytosis/genetics , Phenotype , Plaque, Amyloid , Phospholipase C gamma/metabolism
2.
J Periodontal Res ; 59(3): 512-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243688

ABSTRACT

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.


Subject(s)
Alveolar Bone Loss , Dementia , Disease Models, Animal , Mice, Transgenic , Periodontitis , RANK Ligand , Animals , Female , Alveolar Bone Loss/pathology , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/metabolism , Male , Mice , Dementia/etiology , Humans , Aged , RANK Ligand/analysis , RANK Ligand/metabolism , Sex Factors , Periodontitis/complications , Periodontitis/pathology , X-Ray Microtomography , Osteoclasts/pathology , Amyloid beta-Peptides/metabolism , Gingival Crevicular Fluid/chemistry , Peptide Fragments/analysis , Risk Factors
3.
Brain ; 146(3): 991-1005, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35348636

ABSTRACT

The mechanisms underlying how urban air pollution affects Alzheimer's disease (AD) are largely unknown. Ozone (O3) is a reactive gas component of air pollution linked to increased AD risk, but is confined to the respiratory tract after inhalation, implicating the peripheral immune response to air pollution in AD neuropathology. Here, we demonstrate that O3 exposure impaired the ability of microglia, the brain's parenchymal immune cells, to associate with and form a protective barrier around Aß plaques, leading to augmented dystrophic neurites and increased Aß plaque load. Spatial proteomic profiling analysis of peri-plaque proteins revealed a microenvironment-specific signature of dysregulated disease-associated microglia protein expression and increased pathogenic molecule levels with O3 exposure. Unexpectedly, 5xFAD mice exhibited an augmented pulmonary cell and humoral immune response to O3, supporting that ongoing neuropathology may regulate the peripheral O3 response. Circulating HMGB1 was one factor upregulated in only 5xFAD mice, and peripheral HMGB1 was separately shown to regulate brain Trem2 mRNA expression. These findings demonstrate a bidirectional lung-brain axis regulating the central and peripheral AD immune response and highlight this interaction as a potential novel therapeutic target in AD.


Subject(s)
Alzheimer Disease , HMGB1 Protein , Ozone , Mice , Animals , Ozone/toxicity , Ozone/metabolism , Proteomics , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Brain/pathology , Lung/metabolism , Lung/pathology , Plaque, Amyloid/pathology , Microglia/metabolism , Mice, Transgenic , Disease Models, Animal , Membrane Glycoproteins/metabolism , Receptors, Immunologic
4.
Curr Osteoporos Rep ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236512

ABSTRACT

PURPOSE OF REVIEW: This comprehensive review discusses the complex relationship between Alzheimer's disease (AD) and osteoporosis, two conditions that are prevalent in the aging population and result in adverse complications on quality of life. The purpose of this review is to succinctly elucidate the many commonalities between the two conditions, including shared pathways, inflammatory and oxidative mechanisms, and hormonal deficiencies. RECENT FINDINGS: AD and osteoporosis share many aspects of their respective disease-defining pathophysiology. These commonalities include amyloid beta deposition, the Wnt/ß-catenin signaling pathway, and estrogen deficiency. The shared mechanisms and risk factors associated with AD and osteoporosis result in a large percentage of patients that develop both diseases. Previous literature has established that the progression of AD increases the risk of sustaining a fracture. Recent findings demonstrate that the reverse may also be true, suggesting that a fracture early in the life course can predispose one to developing AD due to the activation of these shared mechanisms. The discovery of these commonalities further guides the development of novel therapeutics in which both conditions are targeted. This detailed review delves into the commonalities between AD and osteoporosis to uncover the shared players that bring these two seemingly unrelated conditions together. The discussion throughout this review ultimately posits that the occurrence of fractures and the mechanism behind fracture healing can predispose one to developing AD later on in life, similar to how AD patients are at an increased risk of developing fractures. By focusing on the shared mechanisms between AD and osteoporosis, one can better understand the conditions individually and as a unit, thus informing therapeutic approaches and further research. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.

5.
Curr Osteoporos Rep ; 22(1): 177-181, 2024 02.
Article in English | MEDLINE | ID: mdl-38225472

ABSTRACT

PURPOSE OF REVIEW: This Comment represents three review articles on the relationship between Alzheimer's disease, osteoporosis, and fracture in an exploration of the benefits that AI can provide in scientific writing. The first drafts of the articles were written (1) entirely by humans; (2) entirely by ChatGPT 4.0 (AI-only or AIO); and (3) by humans and ChatGPT 4.0 whereby humans selected literature references, but ChatGPT 4.0 completed the writing (AI-assisted or AIA). Importantly, each review article was edited and carefully checked for accuracy by all co-authors resulting in a final manuscript which was significantly different from the original draft. RECENT FINDINGS: The human-written article took the most time from start to finish, the AI-only article took the least time, and the AI-assisted article fell between the two. When comparing first drafts to final drafts, the AI-only and AI-assisted articles had higher percentages of different text than the human article. The AI-only paper had a higher percentage of incorrect references in the first draft than the AI-assisted paper. The first draft of the AI-assisted article had a higher similarity score than the other two articles when examined by plagiarism identification software. This writing experiment used time tracking, human editing, and comparison software to examine the benefits and risks of using AI to assist in scientific writing. It showed that while AI may reduce total writing time, hallucinations and plagiarism were prevalent issues with this method and human editing was still necessary to ensure accuracy.


Subject(s)
Alzheimer Disease , Fractures, Bone , Humans , Language , Writing , Artificial Intelligence
6.
Curr Osteoporos Rep ; 22(1): 165-176, 2024 02.
Article in English | MEDLINE | ID: mdl-38285083

ABSTRACT

PURPOSE OF REVIEW: This review examines the linked pathophysiology of Alzheimer's disease/related dementia (AD/ADRD) and bone disorders like osteoporosis. The emphasis is on "inflammaging"-a low-level inflammation common to both, and its implications in an aging population. RECENT FINDINGS: Aging intensifies both ADRD and bone deterioration. Notably, ADRD patients have a heightened fracture risk, impacting morbidity and mortality, though it is uncertain if fractures worsen ADRD. Therapeutically, agents targeting inflammation pathways, especially Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and TNF-α, appear beneficial for both conditions. Additionally, treatments like Sirtuin 1 (SIRT-1), known for anti-inflammatory and neuroprotective properties, are gaining attention. The interconnectedness of AD/ADRD and bone health necessitates a unified treatment approach. By addressing shared mechanisms, we can potentially transform therapeutic strategies, enriching our understanding and refining care in our aging society. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.


Subject(s)
Alzheimer Disease , Dementia , Humans , Aged , Alzheimer Disease/epidemiology , Alzheimer Disease/therapy , Dementia/epidemiology , Dementia/therapy , Artificial Intelligence , Bone Density , Inflammation
7.
Curr Osteoporos Rep ; 22(1): 152-164, 2024 02.
Article in English | MEDLINE | ID: mdl-38334917

ABSTRACT

PURPOSE OF REVIEW: This comprehensive review delves into the intricate interplay between Alzheimer's disease (AD) and osteoporosis, two prevalent conditions with significant implications for individuals' quality of life. The purpose is to explore their bidirectional association, underpinned by common pathological processes such as aging, genetic factors, inflammation, and estrogen deficiency. RECENT FINDINGS: Recent advances have shown promise in treating both Alzheimer's disease (AD) and osteoporosis by targeting disease-specific proteins and bone metabolism regulators. Monoclonal antibodies against beta-amyloid and tau for AD, as well as RANKL and sclerostin for osteoporosis, have displayed therapeutic potential. Additionally, ongoing research has identified neuroinflammatory genes shared between AD and osteoporosis, offering insight into the interconnected inflammatory mechanisms. This knowledge opens avenues for innovative dual-purpose therapies that could address both conditions, potentially revolutionizing treatment approaches for AD and osteoporosis simultaneously. This review underscores the potential for groundbreaking advancements in early diagnosis and treatment by unraveling the intricate connection between AD and bone health. It advocates for a holistic, patient-centered approach to medical care that considers both cognitive and bone health, ultimately aiming to enhance the overall well-being of individuals affected by these conditions. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.


Subject(s)
Alzheimer Disease , Osteoporosis , Humans , Alzheimer Disease/therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Artificial Intelligence , Quality of Life , Amyloid beta-Peptides , Osteoporosis/therapy
8.
Alzheimers Dement ; 20(4): 3080-3087, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38343132

ABSTRACT

INTRODUCTION: Genetic studies conducted over the past four decades have provided us with a detailed catalog of genes that play critical roles in the etiology of Alzheimer's disease (AD) and related dementias (ADRDs). Despite this progress, as a field we have had only limited success in incorporating this rich complexity of human AD/ADRD genetics findings into our animal models of these diseases. Our primary goal for the gene replacement (GR)-AD project is to develop mouse lines that model the genetics of AD/ADRD as closely as possible. METHODS: To do this, we are generating mouse lines in which the genes of interest are precisely and completely replaced in the mouse genome by their full human orthologs. RESULTS: Each model set consists of a control line with a wild-type human allele and variant lines that precisely match the human genomic sequence in the control line except for a high-impact pathogenic mutation or risk variant.


Subject(s)
Alzheimer Disease , Humans , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , tau Proteins/genetics , Mutation , Presenilin-1/genetics , Amyloid beta-Protein Precursor/genetics
9.
Alzheimers Dement ; 20(5): 3551-3566, 2024 May.
Article in English | MEDLINE | ID: mdl-38624088

ABSTRACT

INTRODUCTION: Ozone (O3) is an air pollutant associated with Alzheimer's disease (AD) risk. The lung-brain axis is implicated in O3-associated glial and amyloid pathobiology; however, the role of disease-associated astrocytes (DAAs) in this process remains unknown. METHODS: The O3-induced astrocyte phenotype was characterized in 5xFAD mice by spatial transcriptomics and proteomics. Hmgb1fl/fl LysM-Cre+ mice were used to assess the role of peripheral myeloid cell high mobility group box 1 (HMGB1). RESULTS: O3 increased astrocyte and plaque numbers, impeded the astrocyte proteomic response to plaque deposition, augmented the DAA transcriptional fingerprint, increased astrocyte-microglia contact, and reduced bronchoalveolar lavage immune cell HMGB1 expression in 5xFAD mice. O3-exposed Hmgb1fl/fl LysM-Cre+ mice exhibited dysregulated DAA mRNA markers. DISCUSSION: Astrocytes and peripheral myeloid cells are critical lung-brain axis interactors. HMGB1 loss in peripheral myeloid cells regulates the O3-induced DAA phenotype. These findings demonstrate a mechanism and potential intervention target for air pollution-induced AD pathobiology. HIGHLIGHTS: Astrocytes are part of the lung-brain axis, regulating how air pollution affects plaque pathology. Ozone (O3) astrocyte effects are associated with increased plaques and modified by plaque localization. O3 uniquely disrupts the astrocyte transcriptomic and proteomic disease-associated astrocyte (DAA) phenotype in plaque associated astrocytes (PAA). O3 changes the PAA cell contact with microglia and cell-cell communication gene expression. Peripheral myeloid cell high mobility group box 1 regulates O3-induced transcriptomic changes in the DAA phenotype.


Subject(s)
Alzheimer Disease , Astrocytes , HMGB1 Protein , Ozone , Animals , Astrocytes/metabolism , Astrocytes/pathology , HMGB1 Protein/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice, Transgenic , Disease Models, Animal , Brain/pathology , Brain/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Microglia/metabolism , Air Pollutants , Lung/pathology , Amyloid beta-Peptides/metabolism
10.
Alzheimers Dement ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923164

ABSTRACT

INTRODUCTION: Inpp5d is genetically associated with Alzheimer's disease risk. Loss of Inpp5d alters amyloid pathology in models of amyloidosis. Inpp5d is expressed predominantly in microglia but its function in brain is poorly understood. METHODS: We performed single-cell RNA sequencing to study the effect of Inpp5d loss on wild-type mouse brain transcriptomes. RESULTS: Loss of Inpp5d has sex-specific effects on the brain transcriptome. Affected genes are enriched for multiple neurodegeneration terms. Network analyses reveal a gene co-expression module centered around Inpp5d in female mice. Inpp5d loss alters Pleotrophin (PTN), Prosaposin (PSAP), and Vascular Endothelial Growth Factor A (VEGFA) signaling probability between cell types. DISCUSSION: Our data suggest that the normal function of Inpp5d is entangled with mechanisms involved in neurodegeneration. We report the effect of Inpp5d loss without pathology and show that this has dramatic effects on gene expression. Our study provides a critical reference for researchers of neurodegeneration, allowing separation of disease-specific changes mediated by Inpp5d in disease from baseline effects of Inpp5d loss. HIGHLIGHTS: Loss of Inpp5d has different effects in male and female mice. Genes dysregulated by Inpp5d loss relate to neurodegeneration. Total loss of Inpp5d in female mice collapses a conserved gene co-expression module. Loss of microglial Inpp5d affects the transcriptome of other cell types.

11.
Alzheimers Dement ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923171

ABSTRACT

INTRODUCTION: A noncoding variant (rs35349669) within INPP5D, a lipid and protein phosphatase restricted to microglia in the brain, is linked to increased susceptibility to Alzheimer's disease (AD). While Inpp5d is well-studied in amyloid pathology, its role in tau pathology remains unclear. METHODS: PS19 Tauopathy mice were crossed with Inpp5d-haplodeficient (Inpp5d+/-) mice to examine the impact of Inpp5d in tau pathology. RESULTS: Increased INPP5D expression correlated positively with phospho-Tau AT8 in PS19 mice. Inpp5d haplodeficiency mitigated hyperphosphorylated tau levels (AT8, AT180, AT100, and PHF1) and motor deficits in PS19 mice. Transcriptomic analysis revealed an up-regulation of genes associated with immune response and cell migration. DISCUSSION: Our findings define an association between INPP5D expression and tau pathology in PS19 mice. Alleviation in hyperphosphorylated tau, motor deficits, and transcriptomics changes in haplodeficient-Inpp5d PS19 mice indicate that modulation in INPP5D expression may provide therapeutic potential for mitigating tau pathology and improving motor deficits. HIGHLIGHTS: The impact of Inpp5d in the context of tau pathology was studied in the PS19 mouse model. INPP5D expression is associated with tau pathology. Reduced Inpp5d expression in PS19 mice improved motor functions and decreased total and phospho-Tau levels. Inpp5d haplodeficiency in PS19 mice modulates gene expression patterns linked to immune response and cell migration. These data suggest that inhibition of Inpp5d may be a therapeutic approach in tauopathies.

12.
Alzheimers Dement ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687251

ABSTRACT

INTRODUCTION: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS: A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.

13.
Alzheimers Dement ; 20(6): 4126-4146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735056

ABSTRACT

INTRODUCTION: MODEL-AD (Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease) is creating and distributing novel mouse models with humanized, clinically relevant genetic risk factors to capture the trajectory and progression of late-onset Alzheimer's disease (LOAD) more accurately. METHODS: We created the LOAD2 model by combining apolipoprotein E4 (APOE4), Trem2*R47H, and humanized amyloid-beta (Aß). Mice were subjected to a control diet or a high-fat/high-sugar diet (LOAD2+HFD). We assessed disease-relevant outcome measures in plasma and brain including neuroinflammation, Aß, neurodegeneration, neuroimaging, and multi-omics. RESULTS: By 18 months, LOAD2+HFD mice exhibited sex-specific neuron loss, elevated insoluble brain Aß42, increased plasma neurofilament light chain (NfL), and altered gene/protein expression related to lipid metabolism and synaptic function. Imaging showed reductions in brain volume and neurovascular uncoupling. Deficits in acquiring touchscreen-based cognitive tasks were observed. DISCUSSION: The comprehensive characterization of LOAD2+HFD mice reveals that this model is important for preclinical studies seeking to understand disease trajectory and progression of LOAD prior to or independent of amyloid plaques and tau tangles. HIGHLIGHTS: By 18 months, unlike control mice (e.g., LOAD2 mice fed a control diet, CD), LOAD2+HFD mice presented subtle but significant loss of neurons in the cortex, elevated levels of insoluble Ab42 in the brain, and increased plasma neurofilament light chain (NfL). Transcriptomics and proteomics showed changes in gene/proteins relating to a variety of disease-relevant processes including lipid metabolism and synaptic function. In vivo imaging revealed an age-dependent reduction in brain region volume (MRI) and neurovascular uncoupling (PET/CT). LOAD2+HFD mice also demonstrated deficits in acquisition of touchscreen-based cognitive tasks.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , tau Proteins , Animals , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Mice, Transgenic , Brain/pathology , Brain/metabolism , Synapses/pathology , Synapses/metabolism , Male , Female , Humans
14.
J Neuroinflammation ; 20(1): 78, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944969

ABSTRACT

BACKGROUND: Neuroinflammation is an important feature of Alzheimer's disease (AD). Understanding which aspects of the immune system are important in AD may lead to new therapeutic approaches. We study the major histocompatibility complex class I-related immune molecule, MR1, which is recognized by an innate-like T cell population called mucosal-associated invariant T (MAIT) cells. METHODS: Having found that MR1 gene expression is elevated in the brain tissue of AD patients by mining the Agora database, we sought to examine the role of the MR1/MAIT cell axis in AD pathology. Brain tissue from AD patients and the 5XFAD mouse model of AD were used to analyze MR1 expression through qPCR, immunofluorescence, and flow cytometry. Furthermore, mice deficient in MR1 and MAIT cells were crossed with the 5XFAD mice to produce a model to study how the loss of this innate immune axis alters AD progression. Moreover, 5XFAD mice were also used to study brain-resident MAIT cells over time. RESULTS: In tissue samples from AD patients and 5XFAD mice, MR1 expression was substantially elevated in the microglia surrounding plaques vs. those that are further away (human AD: P < 0.05; 5XFAD: P < 0.001). In 5XFAD mice lacking the MR1/MAIT cell axis, the development of amyloid-beta plaque pathology occurred at a significantly slower rate than in those mice with MR1 and MAIT cells. Furthermore, in brain tissue from 5XFAD mice, there was a temporal increase in MAIT cell numbers (P < 0.01) and their activation state, the latter determined by detecting an upregulation of both CD69 (P < 0.05) and the interleukin-2 receptor alpha chain (P < 0.05) via flow cytometry. CONCLUSIONS: Together, these data reveal a previously unknown role for the MR1/MAIT cell innate immune axis in AD pathology and its potential utility as a novel therapeutic target.


Subject(s)
Alzheimer Disease , Mucosal-Associated Invariant T Cells , Humans , Mice , Animals , Mucosal-Associated Invariant T Cells/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Histocompatibility Antigens Class I/genetics , Minor Histocompatibility Antigens/metabolism
15.
NMR Biomed ; 36(5): e4887, 2023 05.
Article in English | MEDLINE | ID: mdl-36454009

ABSTRACT

High-resolution magnetic resonance imaging (MRI) affords unique image contrasts to nondestructively probe the tissue microstructure; validation of MRI findings with conventional histology is essential to better understand the MRI contrasts. However, the dramatic difference in the spatial resolution and image contrast of these two techniques impedes accurate comparison between MRI metrics and traditional histology. To better validate various MRI metrics, we acquired whole mouse brain multigradient recalled-echo and multishell diffusion MRI datasets at 25-µm isotropic resolution. The recently developed Allen Mouse Brain Common Coordinate Framework (CCFv3) provides opportunities to integrate multimodal and multiscale datasets of the whole mouse brain in a common three-dimensional (3D) space. The T2*, quantitative susceptibility mapping, diffusion tensor imaging, and neurite orientation dispersion and density imaging parameters were compared with both serial two-photon tomography images and 3D Nissl staining images in the CCFv3 at the same spatial resolution. The correlation between MRI and Nissl staining strongly depends on different metrics and different regions of the brain. Integrating different imaging modalities to the same space may substantially improve our understanding of the complexity of the brain at different scales.


Subject(s)
Diffusion Tensor Imaging , Magnetic Resonance Imaging , Animals , Mice , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neurites/pathology
16.
Alzheimers Dement ; 19(6): 2528-2537, 2023 06.
Article in English | MEDLINE | ID: mdl-36524682

ABSTRACT

INTRODUCTION: Inositol polyphosphate-5-phosphatase (INPP5D) is a microglia-enriched lipid phosphatase in the central nervous system. A non-coding variant (rs35349669) in INPP5D increases the risk for Alzheimer's disease (AD), and elevated INPP5D expression is associated with increased plaque deposition. INPP5D negatively regulates signaling via several microglial cell surface receptors, including triggering receptor expressed on myeloid cells 2 (TREM2); however, the impact of INPP5D inhibition on AD pathology remains unclear. METHODS: We used the 5xFAD mouse model of amyloidosis to assess how Inpp5d haplodeficiency regulates amyloid pathogenesis. RESULTS: Inpp5d haplodeficiency perturbs the microglial intracellular signaling pathways regulating the immune response, including phagocytosis and clearing of amyloid beta (Aß). It is important to note that Inpp5d haploinsufficiency leads to the preservation of cognitive function. Spatial transcriptomic analysis revealed that pathways altered by Inpp5d haploinsufficiency are related to synaptic regulation and immune cell activation. CONCLUSION: These data demonstrate that Inpp5d haplodeficiency enhances microglial functions by increasing plaque clearance and preserves cognitive abilities in 5xFAD mice. Inhibition of INPP5D is a potential therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Microglia/metabolism , Plaque, Amyloid/pathology , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Disease Models, Animal , Mice, Transgenic
17.
Neurobiol Dis ; 153: 105303, 2021 06.
Article in English | MEDLINE | ID: mdl-33631273

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, robust microgliosis, neuroinflammation, and neuronal loss. Genome-wide association studies recently highlighted a prominent role for microglia in late-onset AD (LOAD). Specifically, inositol polyphosphate-5-phosphatase (INPP5D), also known as SHIP1, is selectively expressed in brain microglia and has been reported to be associated with LOAD. Although INPP5D is likely a crucial player in AD pathophysiology, its role in disease onset and progression remains unclear. We performed differential gene expression analysis to investigate INPP5D expression in AD and its association with plaque density and microglial markers using transcriptomic (RNA-Seq) data from the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) cohort. We also performed quantitative real-time PCR, immunoblotting, and immunofluorescence assays to assess INPP5D expression in the 5xFAD amyloid mouse model. Differential gene expression analysis found that INPP5D expression was upregulated in LOAD and positively correlated with amyloid plaque density. In addition, in 5xFAD mice, Inpp5d expression increased as the disease progressed, and selectively in plaque-associated microglia. Increased Inpp5d expression levels in 5xFAD mice were abolished entirely by depleting microglia with the colony-stimulating factor receptor-1 antagonist PLX5622. Our findings show that INPP5D expression increases as AD progresses, predominantly in plaque-associated microglia. Importantly, we provide the first evidence that increased INPP5D expression might be a risk factor in AD, highlighting INPP5D as a potential therapeutic target. Moreover, we have shown that the 5xFAD mouse model is appropriate for studying INPP5D in AD.


Subject(s)
Alzheimer Disease/genetics , Microglia/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Plaque, Amyloid/genetics , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Animals , Female , Humans , Male , Mice , Mice, Transgenic , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Plaque, Amyloid/metabolism , RNA, Messenger/metabolism , RNA-Seq
18.
Proc Natl Acad Sci U S A ; 114(3): 574-579, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28049840

ABSTRACT

Alzheimer's disease (AD) and other neurodegenerative disorders are associated with the cytoplasmic aggregation of microtubule-associated protein tau. Recent evidence supports transcellular transfer of tau misfolding (seeding) as the mechanism of spread within an affected brain, a process reminiscent of viral infection. However, whereas microbial pathogens can be recognized as nonself by immune receptors, misfolded protein assemblies evade detection, as they are host-derived. Here, we show that when misfolded tau assemblies enter the cell, they can be detected and neutralized via a danger response mediated by tau-associated antibodies and the cytosolic Fc receptor tripartite motif protein 21 (TRIM21). We developed fluorescent, morphology-based seeding assays that allow the formation of pathological tau aggregates to be measured in situ within 24 h in the presence of picomolar concentrations of tau seeds. We found that anti-tau antibodies accompany tau seeds into the cell, where they recruit TRIM21 shortly after entry. After binding, TRIM21 neutralizes tau seeds through the activity of the proteasome and the AAA ATPase p97/VCP in a similar manner to infectious viruses. These results establish that intracellular antiviral immunity can be redirected against host-origin endopathogens involved in neurodegeneration.


Subject(s)
Receptors, Fc/metabolism , Ribonucleoproteins/metabolism , tau Proteins/metabolism , Animals , Antibodies, Neutralizing/metabolism , Cells, Cultured , Cytosol/metabolism , Humans , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Degeneration/immunology , Nerve Degeneration/metabolism , Nerve Degeneration/prevention & control , Neurons/immunology , Neurons/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Protein Aggregation, Pathological/immunology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/prevention & control , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/prevention & control , Receptors, Fc/deficiency , Receptors, Fc/genetics , Ribonucleoproteins/deficiency , Ribonucleoproteins/genetics , tau Proteins/chemistry , tau Proteins/immunology
19.
Proc Natl Acad Sci U S A ; 114(49): 13018-13023, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29158413

ABSTRACT

The molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-ß peptide (Aß) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aß can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of ß-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aß nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aß plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aß-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aß among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aß conformation and clinical phenotype.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Plaque, Amyloid/metabolism , Protein Aggregates , Alzheimer Disease/classification , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid/classification , Amyloid/ultrastructure , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Female , Fluorescent Dyes/chemistry , Frontal Lobe/chemistry , Frontal Lobe/metabolism , Frontal Lobe/pathology , Gene Expression , Humans , Male , Mice , Occipital Lobe/chemistry , Occipital Lobe/metabolism , Occipital Lobe/pathology , Peptide Hydrolases/chemistry , Plaque, Amyloid/classification , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Protein Binding , Protein Conformation , Proteolysis , Spectrometry, Fluorescence , Temporal Lobe/chemistry , Temporal Lobe/metabolism , Temporal Lobe/pathology , Thiophenes/chemistry
20.
Cereb Cortex ; 28(4): 1219-1232, 2018 04 01.
Article in English | MEDLINE | ID: mdl-28203748

ABSTRACT

Brain fiber pathways are presumed to follow smooth curves but recent high angular resolution diffusion MRI (dMRI) suggests that instead they follow 3 primary axes often nearly orthogonal. To investigate this, we analyzed axon pathways under monkey primary motor cortex with (1) dMRI tractography, (2) axon tract tracing, and (3) axon immunohistochemistry. dMRI tractography shows the predicted crossings of axons in mediolateral and dorsoventral orientations and does not show axon turns in this region. Axons labeled with tract tracer in the motor cortex dispersed in the centrum semiovale by microscopically sharp axonal turns and/or branches (radii ≤15 µm) into 2 sharply defined orientations, mediolateral and dorsoventral. Nearby sections processed with SMI-32 antibody to label projection axons and SMI-312 antibody to label all axons revealed axon distributions parallel to the tracer axons. All 3 histological methods confirmed preponderant axon distributions parallel with dMRI axes with few axons (<20%) following smooth curves or diagonal orientations. These findings indicate that axons navigate deep white matter via microscopic sharp turns and branches between primary axes. They support dMRI observations of primary fiber axes, as well as the prediction that fiber crossings include navigational events not yet directly resolved by dMRI. New methods will be needed to incorporate coherent microscopic navigation into dMRI of connectivity.


Subject(s)
Axons/physiology , Diffusion Magnetic Resonance Imaging , Motor Cortex/cytology , Motor Cortex/diagnostic imaging , Nerve Fibers/physiology , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Dextrans/metabolism , Female , Humans , Image Processing, Computer-Assisted , Macaca mulatta , Male , Motor Cortex/metabolism , Neurofilament Proteins/metabolism , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL