Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Nano Lett ; 23(2): 462-468, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36638061

ABSTRACT

Spatiotemporal pattern formation is dynamic self-organization widely observed in nature and drives various functions. Among these functions, chirality plays a central role. The relationship between dynamic self-organization and chirality has been an open question; therefore, the production of chiral nanomaterials by dynamic self-organization has not been achieved. Here, we show that the confinement of a two-dimensional spatiotemporal micropattern via the electrodeposition of a binary Cu alloy into a nanopore induces mirror symmetry breaking to produce a helical nanostructure of the noble-metal component although it is still not yet possible to control the handedness at this stage. This result suggests that spatiotemporal symmetry breaking functions as a mirror symmetry breaking if cylindrical pores are given as the boundary condition. This study can be a model system of how spatiotemporal symmetry breaking plays a role in mirror symmetry breaking, and it proposes a new approach to producing helical nanomaterials through dynamic self-organization.

2.
Nano Lett ; 23(8): 3174-3180, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37052340

ABSTRACT

Helical perovskite nanocrystals (H-PNCs) were prepared using nanometric silica helical ribbons as platforms for the in situ growth of the crystals using the supersaturated recrystallization method. The H-PNCs grow inside nanometric helical porous silica, and their handedness is determined by the handedness of porous silica templates. They show both strong induced circular dichroism (CD) and strong induced circularly polarized luminescence (CPL) signals, with high dissymmetry g-factors. Right-handed and left-handed PNCs show respectively positive and negative CD and CPL signals, with a dissymmetry g-factor (abs and lum) of ∼±2 × 10-2. Simulations based on the boundary element method demonstrate that the circular dichroism originates from the chiral shape of H-PNCs.

3.
Chemphyschem ; 24(3): e202200573, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36333110

ABSTRACT

The synthesis and characterization of diketopyrrolopyrroles and perylenemonoimidodiesters linked to a substituted benzoic acid in the ortho, meta, and para positions, are reported. Grafting of these dyes on the surface of chiral silica nanohelices is used to probe how the morphology of the platform at the mesoscopic level affects the induction of chiroptical properties onto achiral molecular chromophores. The grafted structures are weakly (diketopyrrolopyrroles) or strongly (perylenemonoimidodiesters) emissive, exhibiting both locally-excited state emission and a broad, structureless emission assigned to excimers. The dissymmetry factors obtained using circular dichroism highlight optimized supramolecular organization between the chromophores for enhancing the chiroptical properties of the system. In the ortho- derivatives, poor organization due to steric hindrance is reflected in a low density of chromophores on walls of the silica-nanostructures (<0.1 vs. >0.3 and up to 0.6 molecules/nm2 for the ortho and meta or para derivatives, respectively) and lower gabs values than in the other derivatives (gabs <2×10-5 vs 6×10-5 for the ortho and para derivatives, respectively). The para derivatives presented a better organization and increased values of gabs . All grafted chromophores evidence varying degrees of excimer emission which was not found to directly correlate to their grafting density.

4.
Langmuir ; 39(12): 4216-4223, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36926905

ABSTRACT

The process of convectively self-assembling particles in films suffers from low reproducibility due to its high dependency on particle concentration, as well as a variety of interactions and physical parameters. Inhomogeneities in flow rates and instabilities at the air-liquid interface are mostly responsible for reproducibility issues. These problems are aggravated by adding multiple components to the dispersion, such as binary solvent mixtures or surfactant/polymer additives, both common approaches to control stick-slip behavior. When an additive is used, not only does it change the surface tension, but also the viscosity and the evaporation rate. Worse yet, gradients in these three properties can form, which then lead to Marangoni currents. Here, we use a series of alcohols to study the role of viscosity independently of other solvent properties, to show its impact on stick-slip behavior and interband distances. We show that mixtures of glycerol and alcohol or poly(acrylic acid) and alcohol lead to more complex patterning. Marangoni currents are not always observed in co-solvent systems, being dependent on the rate of solvent evaporation. To produce homogeneous particle assemblies and control stick-slip behavior, gradients must be avoided, and the surface tension and viscosity need both be carefully controlled.

5.
Chirality ; 35(7): 411-417, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36943171

ABSTRACT

Fluorescent materials with large Stokes shifts have significant potential for use in optical applications. Typically, a synthetic design strategy is utilized for this purpose. In this study, we demonstrated a novel method by binding a chiral template to a nonchiral fluorescent agent without chemical modification. Specifically, α-helical poly(L-lysine) was employed as the chiral template, which interacted with a disulfonic fluorescent dye, such as NK2751. The dye caused excimer luminescence by inducing the formation of a chirally H-aggregated dimer only when poly(L-lysine) was in an α-helical shape. The result was a Stokes shift of 230 nm. Similar effects were not observed when the chiral template was in a random coil condition and the Stokes shift was less than 40 nm. These findings imply that H-aggregated dimerization, which often results in quenching, permits the electronic transitions necessary for fluorescence events by the formation of the chirally twisted state. In addition, we introduce for the first time the generation of circularly polarized luminescence using the chirality induction phenomena in a dye supported by poly(L-lysine).

6.
J Am Chem Soc ; 144(4): 1663-1671, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35073069

ABSTRACT

Mastering the manipulation of chirality at the nanoscale has long been a priority for chemists, physicists, and materials scientists, given its importance in the biochemical processes of the natural world and in the development of novel technologies. In this vein, the formation of novel metamaterials and sensing platforms resulting from the synergic combination of chirality and plasmonics has opened new avenues in nano-optics. Recently, the implementation of chiral plasmonic nanostructures in photocatalysis has been proposed theoretically as a means to drive polarization-dependent photochemistry. In the present work, we demonstrate that the use of inorganic nanometric chiral templates for the controlled assembly of Au and TiO2 nanoparticles leads to the formation of plasmon-based photocatalysts with polarization-dependent reactivity. The formation of plasmonic assemblies with chiroptical activities induces the asymmetric formation of hot electrons and holes generated via electromagnetic excitation, opening the door to novel photocatalytic and optoelectronic features. More precisely, we demonstrate that the reaction yield can be improved when the helicity of the circularly polarized light used to activate the plasmonic component matches the handedness of the chiral substrate. Our approach may enable new applications in the fields of chirality and photocatalysis, particularly toward plasmon-induced chiral photochemistry.

7.
Chemistry ; 27(1): 427-433, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33064331

ABSTRACT

The combination of metal catalyst and inorganic silica frameworks provides a greener approach to recyclable catalysis. In this study, three phosphine-gold chloride complexes have been successfully covalently grafted onto chiral silica nanohelices. The resulting 3D ensembles showed chiroptical properties that allowed the monitoring of the supported ligands. The heterogeneous gold chloride catalysts in cooperation with silver triflate exhibited high reactivity in various reactions, especially in the spirocyclization of aryl alkynoate esters, for which a catalytic loading of 0.05 mol % could be employed. The heterogeneous catalysts could be easily recovered and recycled seven or eight times without any loss of efficiency. By adding more silver triflate, 25 cycles with full conversion were achieved owing to a complex catalytic system based on silica and metallic species.

8.
Chirality ; 33(9): 494-505, 2021 09.
Article in English | MEDLINE | ID: mdl-34296461

ABSTRACT

Hybrid silica-organic nanohelices are used to organize a large variety of nonchiral small organic molecules or inorganic anions to nanometer-sized assemblies. Such chiral organization of achiral molecules induces chiroptical properties as detected by vibrational or electronic circular dichroism (CD), as well as from circularly polarized luminescence (CPL).

9.
Nano Lett ; 20(12): 8453-8460, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32880460

ABSTRACT

Perovskite nanocrystals (PNCs) exhibit excellent absorption and luminescent properties. Inorganic silica right (or left) handed nanohelices are used as chiral templates to induce optically active properties to CsPbBr3 PNCs grafted on their surfaces. In suspension, PNCs grafted on the nanohelices do not show any detectable chiroptical properties. In contrast, in a dried film state, they show large circular dichroism (CD) and circularly polarized luminescence (CPL) signals with dissymmetric factor up to 6 × 10-3. Grazing incidence X-ray scattering, tomography, and cryo-electron microscopy (EM) have shown closely and helically packed PNCs on the dried helices and much more loosely organized PNCs on helices in suspension. Simulations based on the coupled dipole method (CDM) demonstrate that the CD comes from the dipolar interaction between PNC assembled into a chiral structure and the CD decreases with the interparticle distance.

10.
Chirality ; 32(7): 949-960, 2020 07.
Article in English | MEDLINE | ID: mdl-32346925

ABSTRACT

The assembling behaviors of nonchiral dicationic amphiphilic molecules (gemini) in the presence of the mixture of chiral anionic nucleotides and nonchiral anions are investigated. We demonstrate that subtle balance of various physico-chemical parameters and the competition between chiral and nonchiral anions at the interface of gemini assemblies influences the expression of molecular chirality at the micrometer scale through the hierarchical molecular assembly.

11.
Chemistry ; 25(43): 10141-10148, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31095789

ABSTRACT

In this work, a new class of totally organic fluorescent nanogel particles and their exceptionally specific behaviors based on their unique structures are introduced, which draws a sharp line from conventional fluorophore-doped and fluorophore-branched-type particles. The nanogel particles, the diameter of which could be controlled by adjusting reaction conditions, such as the solvent system, were spontaneously fabricated with a spherical shape by direct polymerization of non-heterocyclic aromatic compounds, such as 2,6-dihydroxyanthracene, 2,6-dihydroxynaphthalene, and 9,9-bis(4-hydroxyphenyl)fluorene with triazinane as the cross-linker. A fluorophoric moiety formed from a polymer main chain was realized in the particle, and consequently, the resultant content of the fluorophoric moiety was around 70-80 wt % per particle. The uniqueness and versatility of the particles can be emphasized by their good compatibility with various solvents due to their amphiphilic and ampholytic swelling properties, but also by their remarkable fluorescent solvatochromism in the dispersion state. Furthermore, these behaviors were preserved even in their polymer composite system. This study also demonstrates that various fluorescent polymer films can be fabricated with emission color control due to memorization of the solvatochromism phenomenon of the dispersed fluorescent nanoparticles.

13.
Small ; 14(47): e1802825, 2018 11.
Article in English | MEDLINE | ID: mdl-30369028

ABSTRACT

Amyloid fibrils generally display chirality, a feature which has rarely been exploited in the development of therapeutics against amyloid diseases. This study reports, for the first time, the use of mesoscopic chiral silica nanoribbons against the in vivo amyloidogenesis of human islet amyloid polypeptide (IAPP), the peptide whose aggregation is implicated in type 2 diabetes. The thioflavin T assay and transmission electron microscopy show accelerated IAPP fibrillization through elimination of the nucleation phase and shortening of the elongation phase by the nanostructures. Coarse-grained simulations offer complementary molecular insights into the acceleration of amyloid aggregation through their nonspecific binding and directional seeding with the nanostructures. This accelerated IAPP fibrillization translates to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental, and behavioral assays. This study has implicated the potential of employing chiral nanotechnologies against the mesoscopic enantioselectivity of amyloid proteins and their associated diseases.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Nanotubes, Carbon/chemistry , Silicon Dioxide/chemistry , Humans , Stereoisomerism
14.
Chemistry ; 24(44): 11344-11353, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29806224

ABSTRACT

In order to investigate the principle of chiral induction from nanometric silica helices to polyoxometalate (POM) clusters, a series of optically active silica POM-based nanohelices (NANOPOMs) have been prepared by electrostatic grafting and direct adsorption of α-Keggin polyoxometalate [α-PW12 O40 ]3- to well-defined left- and right-handed silica nanohelices. UV/Vis, Raman, DRIFT, TEM, HR-TEM, EDS and circular dichroism (CD) spectroscopy were used to characterize these NANOPOMs, and confirm the presence of POM clusters as well as their interactions with the helical support. The optical activity of the left-handed and right-handed NANOPOMs has been proven by CD spectroscopy. Their CD spectra are mirror images of one another, showing cotton effects at around 214 and 276 nm, this last contribution corresponding to the oxygen-to-tungsten charge-transfer bands of Keggin polyoxoanions. The CD signal of POM clusters is strongly enhanced for NANOPOMs built by adsorption of POM onto silica nanohelices, indicating a better induced optical activity to POM clusters. These nanohelices are stable, recoverable and active catalysts in the oxidation of sulfides. To the best of our knowledge, the present research represents the first examples of optically active POM-containing silica nanohelices in which achiral POM clusters have been grafted onto silica nanohelices, and display chiroptical effects.

16.
Nano Lett ; 16(10): 6411-6415, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27585220

ABSTRACT

Synthesis of chiral inorganic or hybrid nanomaterials through sol-gel transcription of chiral organic templates has attracted a great deal of interest for more than a decade. However, the chiral nature of these inorganic matrices has never been directly observed. For the first time, we report a direct evaluation of chirality on noncrystalline silica chiral nanoribbons by vibrational circular dichroism (VCD) measurements. Strong Cotton effect around 1150-1000 cm-1 from Si-O-Si asymmetric stretching vibration was observed. Surprisingly, calcination of these hybrid nanoribbons doubled the intensity of Cotton effects. On the basis of transmission electron microscopy observations, IR, VCD, NMR, and Raman spectroscopies, we demonstrate that the silica chirality originates from twisted siloxane network composed of chiral arrangement of the Si-O-Si bonds. Our findings clearly prove the presence of chiral organization of amorphous silica network, making them very promising chiral platforms for chiral recognition, optical applications, or asymmetric catalysis.

17.
Angew Chem Int Ed Engl ; 56(11): 2989-2993, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28146313

ABSTRACT

A new strategy is described for generating strong circularly polarized luminescence with highly tunable emission bands through chiral induction in nonchiral, totally organic, low-molecular-weight fluorescent dyes by chiral nanotemplate systems. Our approach allows the first systematic investigation to clarify the correlation between the circular dichroism and circularly polarized luminescence intensities. As a result, a dilute solution system with the highest circularly polarized luminescence intensity achieved to date and a dissymmetry factor of over 0.1 was identified.

19.
Chem Commun (Camb) ; 60(59): 7634-7637, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38958669

ABSTRACT

A microsphere, assembled from a chiral π-conjugated polymer with narrow polydispersity, features a well-organized twisted-bipolar structure and exhibits highly biased circularly polarized luminescence (CPL). The CPL emitted toward the equatorial direction is 61-fold greater than that emitted along the zenith direction, which is the highest anisotropy among existing microscopic CPL emitters.

20.
Chem Commun (Camb) ; 60(13): 1743-1746, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38240695

ABSTRACT

Chemoresponsive microgels functionalized with enantiomeric Δ- or Λ-[Ru(bpy)3]2+ showed tunable chiroptical properties upon swelling and shrinking. The tuning is triggered by a modulation of the local mobility of [Ru(bpy)3]2+ upon addition of fructose, controlling interactions and distances between [Ru(bpy)3]2+ and phenylboronic acid.

SELECTION OF CITATIONS
SEARCH DETAIL