Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 51(2): 783-795, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36610792

ABSTRACT

The number of genetic variations in the SARS-CoV-2 genome has been increasing primarily due to continuous viral mutations. Here, we report that the human APOBEC3A (A3A) cytidine deaminase plays a critical role in the induction of C-to-U substitutions in the SARS-CoV-2 genome. Bioinformatic analysis of the chronological genetic changes in a sequence database indicated that the largest UC-to-UU mutation signature, consistent with APOBEC-recognized nucleotide motifs, was predominant in single-stranded RNA regions of the viral genome. In SARS-CoV-2-infected cells, exogenous expression of A3A but not expression of other APOBEC proteins induced UC-to-UU mutations in viral RNA (vRNA). Additionally, the mutated C bases were often located at the tips in bulge or loop regions in the vRNA secondary structure. Interestingly, A3A mRNA expression was drastically increased by interferons (IFNs) and tumour necrosis factor-α (TNF-α) in epithelial cells derived from the respiratory system, a site of efficient SARS-CoV-2 replication. Moreover, the UC-to-UU mutation rate was increased in SARS-CoV-2 produced from lung epithelial cells treated with IFN-ß and TNF-α, but not from CRISPR/Cas9-based A3A knockout cells. Collectively, these findings demonstrate that A3A is a primary host factor that drives mutations in the SARS-CoV-2 RNA genome via RNA editing.


Subject(s)
Cytidine Deaminase , Mutation , SARS-CoV-2 , Humans , COVID-19/metabolism , COVID-19/virology , Cytidine Deaminase/metabolism , Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , Tumor Necrosis Factor-alpha/genetics
2.
J Biol Chem ; 298(3): 101724, 2022 03.
Article in English | MEDLINE | ID: mdl-35157849

ABSTRACT

ORF8 is an accessory protein encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consensus regarding the biological functions of ORF8 is lacking, largely because the fundamental characteristics of this protein in cells have not been determined. To clarify these features, we herein established an ORF8 expression system in 293T cells. Using this system, approximately 41% of the ORF8 expressed in 293T cells were secreted extracellularly as a glycoprotein homodimer with inter/intramolecular disulfide bonds. Intracellular ORF8 was sensitive to the glycosidase Endo H, whereas the secreted portion was Endo-H-resistant, suggesting that secretion occurs via a conventional pathway. Additionally, immunoblotting analysis showed that the total amounts of the major histocompatibility complex class Ι (MHC-I), angiotensin-converting enzyme 2 (ACE2), and SARS-CoV-2 spike (CoV-2 S) proteins coexpressed in cells were not changed by the increased ORF8 expression, although FACS analysis revealed that the expression of the cell surface MHC-I protein, but not that of ACE2 and CoV-2 S proteins, was reduced by ORF8 expression. Finally, we demonstrate by RNA-seq analysis that ORF8 had no significant stimulatory effects in human primary monocyte-derived macrophages (MDMs). Taken together, our results provide fundamental evidence that the ORF8 glycoprotein acts as a secreted homodimer, and its functions are likely associated with the intracellular transport and/or extracellular signaling in SARS-CoV-2 infection.


Subject(s)
COVID-19 , Glycoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Proteins , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Glycoproteins/metabolism , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/metabolism
3.
J Virol ; 96(20): e0116222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36214577

ABSTRACT

Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Immune Sera , Amino Acids/genetics , Nucleotides , Mutation
4.
J Gen Virol ; 103(10)2022 10.
Article in English | MEDLINE | ID: mdl-36205476

ABSTRACT

Macaque-tropic HIV-1 (HIV-1mt) variants have been developed to establish preferable primate models that are advantageous in understanding HIV-1 infection pathogenesis and in assessing the preclinical efficacy of novel prevention/treatment strategies. We previously reported that a CXCR4-tropic HIV-1mt, MN4Rh-3, efficiently replicates in peripheral blood mononuclear cells (PBMCs) of cynomolgus macaques homozygous for TRIMCyp (CMsTC). However, the CMsTC challenged with MN4Rh-3 displayed low viral loads during the acute infection phase and subsequently exhibited short-term viremia. These virological phenotypes in vivo differed from those observed in most HIV-1-infected people. Therefore, further development of the HIV-1mt variant was needed. In this study, we first reconstructed the MN4Rh-3 clone to produce a CCR5-tropic HIV-1mt, AS38. In addition, serial in vivo passages allowed us to produce a highly adapted AS38-derived virus that exhibits high viral loads (up to approximately 106 copies ml-1) during the acute infection phase and prolonged periods of persistent viremia (lasting approximately 16 weeks postinfection) upon infection of CMsTC. Whole-genome sequencing of the viral genomes demonstrated that the emergence of a unique 15-nt deletion within the vif gene was associated with in vivo adaptation. The deletion resulted in a significant increase in Vpr protein expression but did not affect Vif-mediated antagonism of antiretroviral APOBEC3s, suggesting that Vpr is important for HIV-1mt adaptation to CMsTC. In summary, we developed a novel CCR5-tropic HIV-1mt that can induce high peak viral loads and long-term viremia and exhibits increased Vpr expression in CMsTC.


Subject(s)
Gene Products, vpr , HIV Infections , HIV Seropositivity , HIV-1 , Simian Immunodeficiency Virus , Animals , HIV-1/genetics , Leukocytes, Mononuclear , Macaca fascicularis , Simian Immunodeficiency Virus/genetics , Viremia , Virus Replication
5.
J Antimicrob Chemother ; 77(3): 574-577, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34894227

ABSTRACT

BACKGROUND: In vitro selection experiments identified viruses resistant to integrase strand transfer inhibitors (INSTIs) carrying mutations in the G-tract (six guanosines) of the 3'-polypurine tract (3'-PPT). A clinical study also reported that mutations in the 3'-PPT were observed in a patient receiving dolutegravir monotherapy. However, recombinant viruses with the 3'-PPT mutations that were found in the clinical study were recently shown to be susceptible to INSTIs. OBJECTIVES: To identify the specific mutation(s) in the G-tract of the 3'-PPT for acquiring INSTI resistance, we constructed infectious clones bearing single or multiple mutations and systematically characterized the susceptibility of these clones to both first- and second-generation INSTIs. METHODS: The infectious clones were tested for their infectivity and susceptibility to INSTIs in a single-cycle assay using TZM-bl cells. RESULTS: A single mutation of thymidine (T) at the fifth position (GGG GTG) in the G-tract of the 3'-PPT had no effect on INSTI resistance. A double mutation, cytidine (C) or 'T' at the second position and 'T' at the fifth position (GCG GTG and GTG GTG), increased resistance to INSTIs, with the appearance of a plateau in the maximal percentage inhibition (MPI) of the dose-response curves, consistent with a non-competitive mechanism of inhibition. CONCLUSIONS: Mutations at the second and fifth positions in the G-tract of the 3'-PPT may result in complex resistance mechanism(s), rather than simply affecting INSTI binding at the IN active site.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Integrase/genetics , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , HIV-1/genetics , Humans , Mutation
6.
J Virol ; 93(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31511380

ABSTRACT

Type I interferons (IFNs), including alpha IFN (IFN-α) and IFN-ß, potently suppress HIV-1 replication by upregulating IFN-stimulated genes (ISGs). The viral capsid protein (CA) partly determines the sensitivity of HIV-1 to IFNs. However, it remains to be determined whether CA-related functions, including utilization of known host factors, reverse transcription, and uncoating, affect the sensitivity of HIV-1 to IFN-mediated restriction. Recently, we identified an HIV-1 CA variant that is unusually sensitive to IFNs. This variant, called the RGDA/Q112D virus, contains multiple mutations in CA: H87R, A88G, P90D, P93A, and Q112D. To investigate how an IFN-hypersensitive virus can evolve to overcome IFN-ß-mediated blocks targeting the viral capsid, we adapted the RGDA/Q112D virus in IFN-ß-treated cells. We successfully isolated IFN-ß-resistant viruses which contained either a single Q4R substitution or the double amino acid change G94D/G116R. These two IFN-ß resistance mutations variably changed the sensitivity of CA binding to human myxovirus resistance B (MxB), cleavage and polyadenylation specificity factor 6 (CPSF6), and cyclophilin A (CypA), indicating that the observed loss of sensitivity was not due to interactions with these known host CA-interacting factors. In contrast, the two mutations apparently functioned through distinct mechanisms. The Q4R mutation dramatically accelerated the kinetics of reverse transcription and initiation of uncoating of the RGDA/Q112D virus in the presence or absence of IFN-ß, whereas the G94D/G116R mutations affected reverse transcription only in the presence of IFN-ß, most consistent with a mechanism of the disruption of binding to an unknown IFN-ß-regulated host factor. These results suggest that HIV-1 can exploit multiple, known host factor-independent pathways to avoid IFN-ß-mediated restriction by altering capsid sequences and subsequent biological properties.IMPORTANCE HIV-1 infection causes robust innate immune activation in virus-infected patients. This immune activation is characterized by elevated levels of type I interferons (IFNs), which can block HIV-1 replication. Recent studies suggest that the viral capsid protein (CA) is a determinant for the sensitivity of HIV-1 to IFN-mediated restriction. Specifically, it was reported that the loss of CA interactions with CPSF6 or CypA leads to higher IFN sensitivity. However, the molecular mechanism of CA adaptation to IFN sensitivity is largely unknown. Here, we experimentally evolved an IFN-ß-hypersensitive CA mutant which showed decreased binding to CPSF6 and CypA in IFN-ß-treated cells. The CA mutations that emerged from this adaptation indeed conferred IFN-ß resistance. Our genetic assays suggest a limited contribution of known host factors to IFN-ß resistance. Strikingly, one of these mutations accelerated the kinetics of reverse transcription and uncoating. Our findings suggest that HIV-1 selected multiple, known host factor-independent pathways to avoid IFN-ß-mediated restriction.


Subject(s)
Capsid Proteins/genetics , Capsid/drug effects , Capsid/metabolism , HIV-1/drug effects , HIV-1/genetics , Interferon-beta/metabolism , Interferon-beta/pharmacology , Cyclophilin A , HEK293 Cells , HIV Infections/virology , HeLa Cells , Host-Pathogen Interactions , Humans , Mutation , Myxovirus Resistance Proteins , Reverse Transcription , THP-1 Cells , Virus Replication/drug effects , mRNA Cleavage and Polyadenylation Factors
7.
Nucleic Acids Res ; 46(19): 10368-10379, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30060196

ABSTRACT

APOBEC3H (A3H) is a mammal-specific cytidine deaminase that potently restricts the replication of retroviruses. Primate A3Hs are known to exert key selective pressures against the cross-species transmission of primate immunodeficiency viruses from chimpanzees to humans. Despite recent advances, the molecular structures underlying the functional mechanisms of primate A3Hs have not been fully understood. Here, we reveal the 2.20-Å crystal structure of the chimpanzee A3H (cpzA3H) dimer bound to a short double-stranded RNA (dsRNA), which appears to be similar to two recently reported structures of pig-tailed macaque A3H and human A3H. In the structure, the dsRNA-binding interface forms a specialized architecture with unique features. The analysis of the dsRNA nucleotides in the cpzA3H complex revealed the GC-rich palindrome-like sequence preference for dsRNA interaction, which is largely determined by arginine residues in loop 1. In cells, alterations of the cpzA3H residues critical for the dsRNA interaction severely reduce intracellular protein stability due to proteasomal degradation. This suggests that cpzA3H stability is regulated by the dsRNA-mediated dimerization as well as by unknown cellular machinery through proteasomal degradation in cells. Taken together, these findings highlight unique structural features of primate A3Hs that are important to further understand their cellular functions and regulation.


Subject(s)
Aminohydrolases/chemistry , Cytidine Deaminase/chemistry , Pan troglodytes/genetics , RNA, Double-Stranded/chemistry , Amino Acid Sequence/genetics , Aminohydrolases/genetics , Animals , Cytidine Deaminase/genetics , Dimerization , HIV-1/genetics , HIV-1/pathogenicity , Humans , Macaca nemestrina/genetics , RNA, Double-Stranded/genetics , Virus Replication/genetics
9.
J Virol ; 90(9): 4563-4578, 2016 May.
Article in English | MEDLINE | ID: mdl-26912631

ABSTRACT

UNLABELLED: We previously found that natural single-nucleotide variations located within a proximal region of splicing acceptor 1 (SA1prox) in the HIV-1 genome could alter the viral replication potential and mRNA expression pattern, especially the vif mRNA level. Here, we studied the virological and molecular basis of nucleotide sequence variations in SA1prox for alterations of viral replication ability. Consistent with our previous findings, variant clones indeed expressed Vif at different levels and grew distinctively in cells with various APOBEC3G expression levels. Similar effects were observed for natural variations found in HIV-2 SA1prox, suggesting the importance of the SA1prox sequence. To define nucleotides critical for the regulation of HIV-1 Vif expression, effects of natural SA1prox variations newly found in the HIV Sequence Compendium database on vif mRNA/Vif protein levels were examined. Seven out of nine variations were found to produce Vif at lower, higher, or more excessive levels than wild-type NL4-3. Combination experiments of variations giving distinct Vif levels suggested that the variations mutually affected vif transcript production. While low and high producers of Vif grew in an APOBEC3G-dependent manner, excessive expressers always showed an impeded growth phenotype due to defects in single-cycle infectivity and/or virion production levels. The phenotype of excessive expressers was not due primarily to inadequate expression of Tat or Rev, although SA1prox variations altered the overall HIV-1 mRNA expression pattern. Collectively, our results demonstrate that HIV SA1prox regulates Vif expression levels and suggest a relationship between SA1prox and viral adaptation/evolution given that variations occurred naturally. IMPORTANCE: While human cells possess restriction factors to inhibit HIV-1 replication, HIV-1 encodes antagonists to overcome these barriers. Conflicts between host restriction factors and viral counterparts are critical driving forces behind mutual evolution. The interplay of cellular APOBEC3G and viral Vif proteins is a typical example. Here, we demonstrate that naturally occurring single-nucleotide variations in the proximal region of splicing acceptor 1 (SA1prox) of the HIV-1 genome frequently alter Vif expression levels, thereby modulating viral replication potential in cells with various ABOBEC3G levels. The results of the present study reveal a previously unidentified and important way for HIV-1 to compete with APOBEC3G restriction by regulating its Vif expression levels. We propose that SA1prox plays a regulatory role in Vif counteraction against APOBEC3G in order to contribute to HIV-1 replication and evolution, and this may be applicable to other primate lentiviruses.


Subject(s)
Gene Expression Regulation, Viral , Genome, Viral , HIV-1/physiology , Polymorphism, Single Nucleotide , RNA Splice Sites , Virus Replication , vif Gene Products, Human Immunodeficiency Virus/genetics , Alternative Splicing , Amino Acid Sequence , Base Sequence , Cell Line , Codon , Gene Order , Humans , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , Recombination, Genetic , Transcription, Genetic , Virus Replication/genetics
10.
J Virol ; 90(2): 1034-47, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26537685

ABSTRACT

UNLABELLED: The HIV-1 Vif protein inactivates the cellular antiviral cytidine deaminase APOBEC3F (A3F) in virus-infected cells by specifically targeting it for proteasomal degradation. Several studies identified Vif sequence motifs involved in A3F interaction, whereas a Vif-binding A3F interface was proposed based on our analysis of highly similar APOBEC3C (A3C). However, the structural mechanism of specific Vif-A3F recognition is still poorly understood. Here we report structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Alanine-scanning analysis of Vif revealed that six residues located within the conserved Vif F1-, F2-, and F3-box motifs are essential for both A3C and A3F degradation, and an additional four residues are uniquely required for A3F degradation. Modeling of the Vif structure on an HIV-1 Vif crystal structure revealed that three discontinuous flexible loops of Vif F1-, F2-, and F3-box motifs sterically cluster to form a flexible A3F interaction interface, which represents hydrophobic and positively charged surfaces. We found that the basic Vif interface patch (R17, E171, and R173) involved in the interactions with A3C and A3F differs. Furthermore, our crystal structure determination and extensive mutational analysis of the A3F C-terminal domain demonstrated that the A3F interface includes a unique acidic stretch (L291, A292, R293, and E324) crucial for Vif interaction, suggesting additional electrostatic complementarity to the Vif interface compared with the A3C interface. Taken together, these findings provide structural insights into the A3F-Vif interaction mechanism, which will provide an important basis for development of novel anti-HIV-1 drugs using cellular cytidine deaminases. IMPORTANCE: HIV-1 Vif targets cellular antiviral APOBEC3F (A3F) enzyme for degradation. However, the details on the structural mechanism for specific A3F recognition remain unclear. This study reports structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Three discontinuous sequence motifs of Vif, F1, F2, and F3 boxes, assemble to form an A3F interaction interface. In addition, we determined a crystal structure of the wild-type A3F C-terminal domain responsible for the Vif interaction. These results demonstrated that both electrostatic and hydrophobic interactions are the key force driving Vif-A3F binding and that the Vif-A3F interfaces are larger than the Vif-A3C interfaces. These findings will allow us to determine the configurations of the Vif-A3F complex and to construct a structural model of the complex, which will provide an important basis for inhibitor development.


Subject(s)
Cytosine Deaminase/chemistry , Cytosine Deaminase/metabolism , vif Gene Products, Human Immunodeficiency Virus/chemistry , vif Gene Products, Human Immunodeficiency Virus/metabolism , Crystallography, X-Ray , Cytidine Deaminase/chemistry , Cytidine Deaminase/metabolism , DNA Mutational Analysis , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Interaction Mapping , Proteolysis , vif Gene Products, Human Immunodeficiency Virus/genetics
11.
J Antimicrob Chemother ; 71(10): 2760-6, 2016 10.
Article in English | MEDLINE | ID: mdl-27330069

ABSTRACT

BACKGROUND: Rilpivirine is listed as a recommended or alternative key drug in the current ART guidelines. E138K in HIV-1 reverse transcriptase (RT) is a primary mutation in resistance to rilpivirine, although in vitro experiments showed it confers only <3-fold resistance. An unidentified mechanism could amplify resistance to rilpivirine conferred by E138K. OBJECTIVES: The objective of this study was to reveal the mechanism amplifying rilpivirine resistance conferred by E138K. PATIENTS AND METHODS: HIV-1 RT sequences were compared in patients who failed rilpivirine-containing ART virologically. The effects of mutations commonly identified with E138K on rilpivirine susceptibility were analysed by using recombinant HIV-1 variants. RESULTS: Rilpivirine-containing ART was introduced in 162 HIV-1-infected patients at the outpatient clinic of the AIDS Clinical Center (National Center for Global Health and Medicine, Tokyo, Japan) between May 2012 and June 2015. Virological treatment failure occurred in six of these patients. E138K emerged in three patients while other rilpivirine resistance mutations emerged in the other three patients. I135T/L were identified in only three patients with E138K and existed before the introduction of rilpivirine-containing ART. Analysis of recombinant HIV-1 variants indicated that E138K conferred low-level rilpivirine resistance and that coexistence of I135T/L with E138K amplified the resistance. CONCLUSIONS: I135T/L, escape mutations from HLA-B*51/52-restricted cytotoxic T lymphocytes, which are prevalent in Japan, may predispose HIV-1 to harbour E138K upon failure of rilpivirine-containing ART. The mutation patterns of drug resistance may vary due to baseline polymorphic mutations.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral , HIV Infections/virology , HIV Reverse Transcriptase/genetics , HIV-1/drug effects , Mutation , Rilpivirine/pharmacology , Amino Acid Substitution , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Drug Resistance, Viral/genetics , Female , HIV Infections/drug therapy , HIV-1/genetics , Humans , Japan , Male , Models, Molecular , Polymorphism, Genetic , Prevalence , Rilpivirine/therapeutic use , Sequence Analysis, DNA , Treatment Failure , Virus Replication/drug effects
12.
J Equine Sci ; 27(4): 169-173, 2016.
Article in English | MEDLINE | ID: mdl-27974877

ABSTRACT

To evaluate the bispectral index (BIS) as an indicator of anesthetic depth in Thoroughbred horses, BIS values were measured at multiple stages of sevoflurane anesthesia in five horses anesthetized with guaifenesin and thiopental following premedication with xylazine. There was no significant difference between the BIS values recorded at end-tidal sevoflurane concentrations of 2.8% (median 60 ranging from 47 to 68) and 3.5% (median 71 ranging from 49 to 82) in anesthetized horses. These BIS values during anesthesia were significantly lower (P<0.01) than those in awake horses (median 98 ranging from 98 to 98) or sedated horses (median 92 ranging from 80 to 93). During the recovery phase, the BIS values gradually increased over time but did not significantly increase until the horses showed movement. In conclusion, the BIS value could be useful as an indicator of awakening during the recovery period in horses, as previous reported.

13.
Retrovirology ; 11: 9, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24447338

ABSTRACT

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein that mediates the assembly and release of virus-like particles (VLPs) from an infected cell membrane. The Gag C-terminal p6 domain contains short sequence motifs that facilitate virus release from the plasma membrane and mediate incorporation of the viral Vpr protein. Gag p6 has also been found to be phosphorylated during HIV-1 infection and this event may affect virus replication. However, the kinase that directs the phosphorylation of Gag p6 toward virus replication remains to be identified. In our present study, we identified this kinase using a proteomic approach and further delineate its role in HIV-1 replication. RESULTS: A proteomic approach was designed to systematically identify human protein kinases that potently interact with HIV-1 Gag and successfully identified 22 candidates. Among this panel, atypical protein kinase C (aPKC) was found to phosphorylate HIV-1 Gag p6. Subsequent LC-MS/MS and immunoblotting analysis with a phospho-specific antibody confirmed both in vitro and in vivo that aPKC phosphorylates HIV-1 Gag at Ser487. Computer-assisted structural modeling and a subsequent cell-based assay revealed that this phosphorylation event is necessary for the interaction between Gag and Vpr and results in the incorporation of Vpr into virions. Moreover, the inhibition of aPKC activity reduced the Vpr levels in virions and impaired HIV-1 infectivity of human primary macrophages. CONCLUSION: Our current results indicate for the first time that HIV-1 Gag phosphorylation on Ser487 is mediated by aPKC and that this kinase may regulate the incorporation of Vpr into HIV-1 virions and thereby supports virus infectivity. Furthermore, aPKC inhibition efficiently suppresses HIV-1 infectivity in macrophages. aPKC may therefore be an intriguing therapeutic target for HIV-1 infection.


Subject(s)
HIV-1/physiology , Host-Pathogen Interactions , Protein Kinase C/metabolism , Protein Processing, Post-Translational , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Humans , Phosphorylation , Virion/metabolism
14.
J Gen Virol ; 95(Pt 1): 179-189, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24114794

ABSTRACT

Human immunodeficiency virus type 2 (HIV-2) carries an accessory protein Vpx that is important for viral replication in natural target cells. In its C-terminal region, there is a highly conserved poly-proline motif (PPM) consisting of seven consecutive prolines, encoded in a poly-pyrimidine tract. We have previously shown that PPM is critical for Vpx expression and viral infectivity. To elucidate the molecular basis underlying this observation, we analysed the expression of Vpx proteins with various PPM mutations by in vivo and in vitro systems. We found that the number and position of consecutive prolines in PPM are important for Vpx expression, and demonstrated that PPM is essential for efficient Vpx translation. Furthermore, mutational analysis to synonymously disrupt the poly-pyrimidine tract suggested that the context of PPM amino acid sequences is required for efficient translation of Vpx. We similarly analysed HIV-1 and HIV-2 Vpr proteins structurally related to HIV-2 Vpx. Expression level of the two Vpr proteins lacking PPM was shown to be much lower relative to that of Vpx, and not meaningfully enhanced by introduction of PPM at the C terminus. Finally, we examined the Vpx of simian immunodeficiency virus from rhesus monkeys (SIVmac), which also has seven consecutive prolines, for PPM-dependent expression. A multi-substitution mutation in the PPM markedly reduced the expression level of SIVmac Vpx. Taken together, it can be concluded that the notable PPM sequence enhances the expression of Vpx proteins from viruses of the HIV-2/SIVmac group at the translational level.


Subject(s)
HIV Infections/virology , Proline/genetics , Protein Biosynthesis , vpr Gene Products, Human Immunodeficiency Virus/chemistry , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Motifs , Amino Acid Sequence , Base Sequence , Cell Line , Gene Expression Regulation, Viral , HIV-2/genetics , HIV-2/metabolism , Humans , Molecular Sequence Data , Proline/chemistry , Proline/metabolism , vpr Gene Products, Human Immunodeficiency Virus/genetics
15.
J Virol ; 87(21): 11447-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23966385

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.


Subject(s)
HIV-1/physiology , Macaca mulatta/virology , Viral Tropism , Virus Replication , Animals , Cells, Cultured , Gene Products, gag/genetics , Gene Products, gag/metabolism , HIV-1/genetics , HIV-1/immunology , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Leukocytes, Mononuclear/virology , Mutant Proteins/genetics , Mutant Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
16.
Nucleic Acids Res ; 40(11): 5012-22, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22328732

ABSTRACT

The dimer initiation site/dimer linkage sequence (DIS/DLS) region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play essential roles at various stages of the viral life cycle. Through a novel assay we had recently developed, we reported on the necessary and sufficient region for RNA dimerization in the HIV-1 virion. Using this system, we performed further detailed mapping of the functional base pairs necessary for HIV-1 DLS structure. Interestingly, the study revealed a previously unnoticed stem formation between two distantly positioned regions. Based on this and other findings on functional base pairing in vivo, we propose new 3D models of the HIV-1 DLS which contain a unique pseudoknot-like conformation. Since this pseudoknot-like conformation appears to be thermodynamically stable, forms a foundational skeleton for the DLS and sterically restricts the spontaneous diversification of DLS conformations, its unique shape may contribute to the viral life cycle and potentially serve as a novel target for anti-HIV-1 therapies.


Subject(s)
HIV-1/genetics , Models, Molecular , RNA, Viral/chemistry , Base Sequence , Computer Simulation , Dimerization , HEK293 Cells , HIV-1/physiology , Humans , Molecular Sequence Data , Nucleic Acid Conformation , Virus Replication
17.
Sci Rep ; 14(1): 12099, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802662

ABSTRACT

HIV-1 drug resistance genotypic tests have primarily been performed by Sanger sequencing of gene segments encoding different drug target proteins. Since the number of targets has increased with the addition of a new class of antiretroviral drugs, a simple high-throughput system for assessing nucleotide sequences throughout the HIV-1 genome is required. Here, we developed a new solution using nanopore sequencing of viral pangenomes amplified by PCR. Benchmark tests using HIV-1 molecular clones demonstrated an accuracy of up to 99.9%. In addition, validation tests of our protocol in 106 clinical samples demonstrated high concordance of drug resistance and tropism genotypes (92.5% and 98.1%, respectively) between the nanopore sequencing-based results and archived clinical determinations made based on Sanger sequencing data. These results suggest that our new approach will be a powerful solution for the comprehensive survey of HIV-1 drug resistance mutations in clinical settings.


Subject(s)
Drug Resistance, Viral , Genome, Viral , HIV Infections , HIV-1 , Mutation , Nanopore Sequencing , HIV-1/genetics , HIV-1/drug effects , Drug Resistance, Viral/genetics , Nanopore Sequencing/methods , Humans , HIV Infections/virology , HIV Infections/drug therapy , Genotype , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , High-Throughput Nucleotide Sequencing/methods
18.
Front Endocrinol (Lausanne) ; 15: 1411483, 2024.
Article in English | MEDLINE | ID: mdl-38828411

ABSTRACT

Ghrelin is a peptide hormone with various important physiological functions. The unique feature of ghrelin is its serine 3 acyl-modification, which is essential for ghrelin activity. The major form of ghrelin is modified with n-octanoic acid (C8:0) by ghrelin O-acyltransferase. Various acyl modifications have been reported in different species. However, the underlying mechanism by which ghrelin is modified with various fatty acids remains to be elucidated. Herein, we report the purification of bovine, porcine, and equine ghrelins. The major active form of bovine ghrelin was a 27-amino acid peptide with an n-octanoyl (C8:0) modification at Ser3. The major active form of porcine and equine ghrelin was a 28-amino acid peptide. However, porcine ghrelin was modified with n-octanol (C8:0), whereas equine ghrelin was modified with n-butanol (C4:0) at Ser3. This study indicates the existence of structural divergence in ghrelin and suggests that it is necessary to measure the minor and major forms of ghrelin to fully understand its physiology.


Subject(s)
Ghrelin , Animals , Ghrelin/metabolism , Ghrelin/chemistry , Horses , Cattle , Swine , Amino Acid Sequence , Acylation , Caprylates/metabolism
19.
Clin Infect Dis ; 57(7): 1051-5, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23797286

ABSTRACT

BACKGROUND: Rilpivirine is listed as an alternative key drug in current antiretroviral therapy (ART) guidelines. E138G/A/K in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are rilpivirine resistance-associated mutations and can be identified in a few ART-naive patients, although at low frequency. The 138th position in HIV-1 RT is located in one of the putative epitopes of human leukocyte antigen (HLA)-B*18-restricted cytotoxic T lymphocytes (CTLs). CTL-mediated immune pressure selects escape mutations within the CTL epitope. Here we tested whether E138G/A/K could be selected by HLA-B*18-restricted CTLs. METHODS: The amino acid variation at the 138th position was compared between ART-naive HIV-1-infected patients with and without HLA-B*18. The optimal epitope containing the 138th position was determined and the impact of E138G/A/K on CTL response was analyzed by epitope-specific CTLs. The effect of E138G/A/K on drug susceptibility was determined by constructing recombinant HIV-1 variants. RESULTS: The prevalence of E138G/A/K was 21% and 0.37% in 19 and 1088 patients with and without HLA-B*18, respectively (odds ratio, 72.3; P = 4.9 × 10(-25)). The CTL response was completely abolished by the substitution of E138G/A/K in the epitope peptide. E138G/A/K conferred 5.1-, 7.1-, and 2.7-fold resistance to rilpivirine, respectively. CONCLUSIONS: E138G/A/K can be selected by HLA-B*18-restricted CTLs and confer significant rilpivirine resistance. We recommend drug resistance testing before the introduction of rilpivirine-based ART in HLA-B*18-positive patients.


Subject(s)
Anti-HIV Agents/pharmacology , Epitopes, T-Lymphocyte/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , Nitriles/pharmacology , Pyrimidines/pharmacology , Drug Resistance, Viral/genetics , HIV Reverse Transcriptase/genetics , HIV-1/genetics , HIV-1/immunology , HLA-B18 Antigen/genetics , HLA-B18 Antigen/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Leukocytes, Mononuclear/immunology , Models, Molecular , Mutation , Rilpivirine , T-Lymphocytes, Cytotoxic/immunology
20.
J Virol ; 86(7): 3944-51, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22301137

ABSTRACT

Downregulation of major histocompatibility complex class I (MHC-I) by HIV-1 Nef protein is indispensable for evasion of protective immunity by HIV-1. Though it has been suggested that the N-terminal region of Nef contributes to the function by associating with a mu-1A subunit of adaptor protein 1, the structural basis of the interaction between Nef and mu-1A remains elusive. We found that a tripartite hydrophobic motif (Trp13/Val16/Met20) in the N terminus of Nef was required for the MHC-I downregulation. Importantly, the motif functioned as a noncanonical mu-1A-binding motif for the interaction with the tyrosine motif-binding site of the mu-1A subunit. Our findings will help understanding of how HIV-1 evades the antiviral immune response by selectively redirecting the cellular protein trafficking system.


Subject(s)
Adaptor Protein Complex 1/metabolism , Adaptor Protein Complex mu Subunits/metabolism , Down-Regulation , HIV Infections/metabolism , HIV-1/metabolism , Histocompatibility Antigens Class I/genetics , T-Lymphocytes/metabolism , nef Gene Products, Human Immunodeficiency Virus/chemistry , nef Gene Products, Human Immunodeficiency Virus/metabolism , Adaptor Protein Complex 1/genetics , Adaptor Protein Complex mu Subunits/genetics , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , HIV Infections/genetics , HIV Infections/virology , HIV-1/chemistry , HIV-1/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Molecular Sequence Data , Protein Binding , T-Lymphocytes/virology , nef Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL