Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Publication year range
1.
Chembiochem ; : e202400351, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168826

ABSTRACT

Aberrantly-active signal transducer and activator of transcription (Stat)3 has a causal role in many human cancers and represents a validated anticancer drug target, though it has posed significant challenge to drug development. A new small molecule, JKB887, was identified through virtual library screening and is predicted to interact with Lys591, Arg609 and Pro63 in the phospho-tyrosine (pTyr)-binding pocket of the Stat3 SH2 domain. JKB887 inhibited Stat3 DNA-binding activity in vitro in a time-dependent manner, with IC50 of 2.2-4.5 µM at 30-60-min incubation. It directly disrupted both the Stat3 binding to the cognate, high-affinity pTyr (pY) peptide, GpYLPQTV-NH2 in fluorescent polarization assay with IC50 of 3.5-5.5 µM at 60-90-min incubation, and to the IL-6 receptor/gp130 or Src in treated malignant cells. Treatment with JKB887 selectively blocked constitutive Stat3 phosphorylation, nuclear translocation and transcriptional activity, Stat3-regulated gene expression, and decreased viable cell numbers, cell growth, colony formation, migration, and survival in human or mouse tumor cells. By contrast, JKB887 had minimal effects on Stat1 activity, pErk1/2MAPK, pShc, pJAK2, pSrc induction, or cells that do not harbor aberrantly-active Stat3. Additionally, JKB887 inhibited growth of human breast cancer xenografts in mice. JKB887 is a Stat3-selective inhibitor with demonstrable antitumor effects against Stat3-dependent human cancers.

2.
Chem Res Toxicol ; 36(3): 390-401, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36812109

ABSTRACT

Drug-responsive T-cells are activated with the parent compound or metabolites, often via different pathways (pharmacological interaction and hapten). An obstacle to the investigation of drug hypersensitivity is the scarcity of reactive metabolites for functional studies and the absence of coculture systems to generate metabolites in situ. Thus, the aim of this study was to utilize dapsone metabolite-responsive T-cells from hypersensitive patients, alongside primary human hepatocytes to drive metabolite formation, and subsequent drug-specific T-cell responses. Nitroso dapsone-responsive T-cell clones were generated from hypersensitive patients and characterized in terms of cross-reactivity and pathways of T-cell activation. Primary human hepatocytes, antigen-presenting cells, and T-cell cocultures were established in various formats with the liver and immune cells separated to avoid cell contact. Cultures were exposed to dapsone, and metabolite formation and T-cell activation were measured by LC-MS and proliferation assessment, respectively. Nitroso dapsone-responsive CD4+ T-cell clones from hypersensitive patients were found to proliferate and secrete cytokines in a dose-dependent manner when exposed to the drug metabolite. Clones were activated with nitroso dapsone-pulsed antigen-presenting cells, while fixation of antigen-presenting cells or omission of antigen-presenting cells from the assay abrogated the nitroso dapsone-specific T-cell response. Importantly, clones displayed no cross-reactivity with the parent drug. Nitroso dapsone glutathione conjugates were detected in the supernatant of hepatocyte immune cell cocultures, indicating that hepatocyte-derived metabolites are formed and transferred to the immune cell compartment. Similarly, nitroso dapsone-responsive clones were stimulated to proliferate with dapsone, when hepatocytes were added to the coculture system. Collectively, our study demonstrates the use of hepatocyte immune cell coculture systems to detect in situ metabolite formation and metabolite-specific T-cell responses. Similar systems should be used in future diagnostic and predictive assays to detect metabolite-specific T-cell responses when synthetic metabolites are not available.


Subject(s)
Drug Hypersensitivity , Humans , Coculture Techniques , Dapsone/pharmacology , Liver , Hepatocytes , Lymphocyte Activation
3.
Chem Res Toxicol ; 35(2): 199-202, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35107993

ABSTRACT

Teicoplanin is a glycopeptide antibiotic deployed to combat Gram-positive bacterial infection and has recently been associated with development of adverse drug reactions, particularly following previous exposure to vancomycin. In this study, we generated teicoplanin-specific monoclonal T-cell populations from healthy volunteers expressing HLA-A*32:01 and defined pathways of T-cell activation and HLA allele restriction. Teicoplanin-responsive T-cells were CD8+, HLA class I-restricted, and cross-reacted with the lipoglycopeptide daptomycin in proliferation and cytokine/cytolytic molecule (granzyme B, Perforin, and FasL) release assays. These data show that teicoplanin activates T-cells, which may play a role in the pathogenesis of teicoplanin-induced adverse events, in HLA-A*32:01 positive donors.


Subject(s)
Anti-Bacterial Agents/pharmacology , HLA-A Antigens/biosynthesis , T-Lymphocytes/drug effects , Teicoplanin/pharmacology , Anti-Bacterial Agents/chemistry , Healthy Volunteers , Humans , T-Lymphocytes/metabolism , Teicoplanin/chemistry
4.
J Immunol ; 205(9): 2375-2390, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32989092

ABSTRACT

Use of the atypical antipsychotic clozapine is associated with life-threatening agranulocytosis. The delayed onset and the association with HLA variants are characteristic of an immunological mechanism. The objective of this study was to generate clozapine-specific T cell clones (TCC) and characterize pathways of T cell activation and cross-reactivity with clozapine metabolites and olanzapine. TCC were established and characterized by culturing PBMCs from healthy donors and patients with a history of clozapine-induced agranulocytosis. Modeling was used to explore the drug-HLA binding interaction. Global TCC protein changes were profiled by mass spectrometry. Six well-growing clozapine-responsive CD4+ and CD8+ TCC were used for experiments; activation of TCC required APC, with clozapine interacting directly at therapeutic concentrations with several HLA-DR molecules. TCC were also activated with N-desmethylclozapine and olanzapine at supratherapeutic concentrations. Marked changes in TCC protein expression profiles were observed when clozapine treatment was compared with olanzapine and the medium control. Docking of the compounds into the HLA-DRB1*15:01 and HLA-DRB1*04:01 binding clefts revealed that clozapine and olanzapine bind in a similar conformation to the P4-P6 peptide binding pockets, whereas clozapine N-oxide, which did not activate the TCC, bound in a different conformation. TCC secreted Th1, Th2, and Th22 cytokines and effector molecules and expressed TCR Vß 5.1, 16, 20, and 22 as well as chemokine receptors CXCR3, CCR6, CCR4, and CCR9. Collectively, these data show that clozapine interacts at therapeutic concentrations with HLA-DR molecules and activates human CD4+ T cells. Olanzapine only activates TCC at supratherapeutic concentrations.


Subject(s)
Clozapine/immunology , T-Lymphocytes/immunology , Adult , Clone Cells/immunology , Clozapine/analogs & derivatives , Cross Reactions/immunology , Cytokines/immunology , Female , HLA-DR Antigens/immunology , Humans , Lymphocyte Activation/immunology , Male , Middle Aged
5.
Hepatology ; 70(5): 1732-1749, 2019 11.
Article in English | MEDLINE | ID: mdl-31070244

ABSTRACT

Idiosyncratic drug-induced liver injury (DILI) is a rare, often difficult-to-predict adverse reaction with complex pathomechanisms. However, it is now evident that certain forms of DILI are immune-mediated and may involve the activation of drug-specific T cells. Exosomes are cell-derived vesicles that carry RNA, lipids, and protein cargo from their cell of origin to distant cells, and they may play a role in immune activation. Herein, primary human hepatocytes were treated with drugs associated with a high incidence of DILI (flucloxacillin, amoxicillin, isoniazid, and nitroso-sulfamethoxazole) to characterize the proteins packaged within exosomes that are subsequently transported to dendritic cells for processing. Exosomes measured between 50 and 100 nm and expressed enriched CD63. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) identified 2,109 proteins, with 608 proteins being quantified across all exosome samples. Data are available through ProteomeXchange with identifier PXD010760. Analysis of gene ontologies revealed that exosomes mirrored whole human liver tissue in terms of the families of proteins present, regardless of drug treatment. However, exosomes from nitroso-sulfamethoxazole-treated hepatocytes selectively packaged a specific subset of proteins. LC/MS-MS also revealed the presence of hepatocyte-derived exosomal proteins covalently modified with amoxicillin, flucloxacillin, and nitroso-sulfamethoxazole. Uptake of exosomes by monocyte-derived dendritic cells occurred silently, mainly through phagocytosis, and was inhibited by latrunculin A. An amoxicillin-modified 9-mer peptide derived from the exosomal transcription factor protein SRY (sex determining region Y)-box 30 activated naïve T cells from human leukocyte antigen A*02:01-positive human donors. Conclusion: This study shows that exosomes have the potential to transmit drug-specific hepatocyte-derived signals to the immune system and provide a pathway for the induction of drug hapten-specific T-cell responses.


Subject(s)
Dendritic Cells/metabolism , Exosomes/drug effects , Exosomes/metabolism , Hepatocytes/drug effects , Immune System/metabolism , Protein Transport , Cells, Cultured , Hepatocytes/ultrastructure , Humans
6.
Allergy ; 75(10): 2562-2573, 2020 10.
Article in English | MEDLINE | ID: mdl-32246774

ABSTRACT

BACKGROUND: Betalactam (BL) antibiotics are the most common cause of drug hypersensitivity. Amoxicillin (AX), which is often prescribed alongside clavulanic acid (Clav), is the most common elicitor. The aim of this study was to determine whether AX and Clav-responsive T-cells are detectable in patients with immediate hypersensitivity to AX-Clav, to assess whether these T-cells display the same specificity as that detected in skin and provocation testing, and to explore T-cell activation pathways. METHODS: Drug-specific T-cell clones were generated from immediate hypersensitive patients´ blood by serial dilution and repetitive mitogen stimulation. Antigen specificity was assessed by measurement of proliferation and cytokine release. CD4+ /CD8+ phenotype and chemokine receptor expression were analyzed by flow cytometry. RESULTS: 110 AX-specific and 96 Clav-specific T-cell clones were generated from seven patients with positive skin test to either AX or Clav. Proliferation of AX- and Clav-specific clones was dose-dependent, and no cross-reactivity was observed. AX- and Clav-specific clones required antigen-presenting cells to proliferate, and drugs were presented to CD4+ and CD8+ T-cells by MHC class-II and I, respectively. A higher secretion of IL-13 and IL-5 was detected in presence of the culprit drug compared with the alternative drug. Clones expressed CD69, CCR4, CXCR3, and CCR10. CONCLUSIONS: Our study details the antigen specificity and phenotype of T-cell clones generated from patients with AX-Clav-induced immediate hypersensitivity diagnosed by positive skin test. AX- and Clav-specific clones were generated from patients irrespective of whether AX or Clav was the culprit, although differences in cytokine secretion were observed.


Subject(s)
Drug Hypersensitivity , Hypersensitivity, Immediate , Amoxicillin/adverse effects , CD8-Positive T-Lymphocytes , Clavulanic Acid/adverse effects , Clone Cells , Drug Hypersensitivity/diagnosis , Humans , Hypersensitivity, Immediate/diagnosis
7.
Allergy ; 75(4): 781-797, 2020 04.
Article in English | MEDLINE | ID: mdl-31758810

ABSTRACT

Delayed-type, T cell-mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele, and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a nonlinear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways are influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.


Subject(s)
Drug Hypersensitivity , Hypersensitivity, Delayed , Alleles , Drug Hypersensitivity/epidemiology , Drug Hypersensitivity/genetics , Humans , Hypersensitivity, Delayed/chemically induced , Hypersensitivity, Delayed/epidemiology , Incidence , T-Lymphocytes
8.
Chem Res Toxicol ; 33(1): 77-94, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31687800

ABSTRACT

Drug hypersensitivity reactions adversely affect treatment outcome, increase the length of patients' hospitalization, and limit the prescription options available to physicians. In addition, late stage drug attrition and the withdrawal of licensed drugs cost the pharmaceutical industry billions of dollars. This significantly increases the overall cost of drug development and by extension the price of licensed drugs. Drug hypersensitivity reactions are characterized by a delayed onset, and reactions tend to be more serious upon re-exposure. The role of drug-specific T-cells in the pathogenesis of drug hypersensitivity reactions and definition of the nature of the binding interaction of drugs with HLA and T-cell receptors continues to be the focus of intensive research, primarily because susceptibility is associated with expression of one or a small number of HLA alleles. This review critically examines the mechanisms of T-cell activation by drugs. Specific examples of drugs that activate T-cells via the hapten, the pharmacological interaction with immune receptors and the altered self-peptide repertoire pathways, are discussed. Furthermore, the impacts of drug metabolism, drug-protein adduct formation, and immune regulation on the development of drug antigen-responsive T-cells are highlighted. The knowledge gained from understanding the pathways of T-cell activation and susceptibility factors for drug hypersensitivity will provide the building blocks for the development of predictive in vitro assays that will prevent or help to minimize the incidence of these reactions in clinic.


Subject(s)
Drug Hypersensitivity/immunology , T-Lymphocytes/immunology , Animals , Humans , Immunomodulation , Molecular Weight , Pharmaceutical Preparations/chemistry
9.
Allergy ; 74(8): 1533-1548, 2019 08.
Article in English | MEDLINE | ID: mdl-30844087

ABSTRACT

BACKGROUND: Research into drug hypersensitivity associated with the expression of specific HLA alleles has focussed on the interaction between parent drug and the HLA with no attention given to reactive metabolites. For this reason, we have studied HLA-B*13:01-linked dapsone hypersensitivity to (a) explore whether the parent drug and/or nitroso metabolite activate T cells and (b) determine whether HLA-B*13:01 is involved in the response. METHODS: Peripheral blood mononuclear cells (PBMC) from six patients were cultured with dapsone and nitroso dapsone, and proliferative responses and IFN-γ release were measured. Dapsone- and nitroso dapsone-specific T-cell clones were generated and phenotype, function, HLA allele restriction, and cross-reactivity assessed. Dapsone intermediates were characterized by mass spectrometry. RESULTS: Peripheral blood mononuclear cells from six patients and cloned T cells proliferated and secreted Th1/2/22 cytokines when stimulated with dapsone (clones: n = 395; 80% CD4+ CXCR3hi CCR4hi , 20% CD8+CXCR3hi CCR4hi CCR6hi CCR9hi CCR10hi ) and nitroso dapsone (clones: n = 399; 78% CD4+, 22% CD8+ with same chemokine receptor profile). CD4+ and CD8+ clones were HLA class II and class I restricted, respectively, and displayed three patterns of reactivity: compound specific, weakly cross-reactive, and strongly cross-reactive. Nitroso dapsone formed dimers in culture and was reduced to dapsone, providing a rationale for the cross-reactivity. T-cell responses to nitroso dapsone were dependent on the formation of a cysteine-modified protein adduct, while dapsone interacted in a labile manner with antigen-presenting cells. CD8+ clones displayed an HLA-B*13:01-restricted pattern of activation. CONCLUSION: These studies describe the phenotype and function of dapsone- and nitroso dapsone-responsive CD4+ and CD8+ T cells from hypersensitive patients. Discovery of HLA-B*13:01-restricted CD8+ T-cell responses indicates that drugs and their reactive metabolites participate in HLA allele-linked forms of hypersensitivity.


Subject(s)
Dapsone/pharmacology , HLA-B Antigens/genetics , Hypersensitivity/etiology , Lymphocyte Activation/genetics , Nitroso Compounds/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Adult , Cross Reactions , Female , Gene Expression , HLA-B Antigens/immunology , Humans , Hypersensitivity/diagnosis , Hypersensitivity/metabolism , Immunophenotyping , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Middle Aged , Sensitivity and Specificity , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/metabolism
10.
J Immunol ; 199(4): 1223-1237, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28687658

ABSTRACT

Drug hypersensitivity involves the activation of T cells in an HLA allele-restricted manner. Because the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T cell response. Thus, we have used a T cell-priming assay and nitroso sulfamethoxazole (SMX-NO) as a model Ag to investigate the activation of specific TCR Vß subtypes, the impact of programmed death -1 (PD-1), CTL-associated protein 4 (CTLA4), and T cell Ig and mucin domain protein-3 (TIM-3) coinhibitory signaling on activation of naive and memory T cells, and the ability of regulatory T cells (Tregs) to prevent responses. An expansion of the TCR repertoire was observed for nine Vß subtypes, whereas spectratyping revealed that SMX-NO-specific T cell responses are controlled by public TCRs present in all individuals alongside private TCR repertoires specific to each individual. We proceeded to evaluate the extent to which the activation of these TCR Vß-restricted Ag-specific T cell responses is governed by regulatory signals. Blockade of PD-L1/CTLA4 signaling dampened activation of SMX-NO-specific naive and memory T cells, whereas blockade of TIM-3 produced no effect. Programmed death-1, CTLA4, and TIM-3 displayed discrete expression profiles during drug-induced T cell activation, and expression of each receptor was enhanced on dividing T cells. Because these receptors are also expressed on Tregs, Treg-mediated suppression of SMX-NO-induced T cell activation was investigated. Tregs significantly dampened the priming of T cells. In conclusion, our findings demonstrate that distinct TCR Vß subtypes, dysregulation of coinhibitory signaling pathways, and dysfunctional Tregs may influence predisposition to hypersensitivity.


Subject(s)
Haptens/immunology , Lymphocyte Activation , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , CD4-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/metabolism , Drug Hypersensitivity , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Immunologic Memory , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Sulfamethoxazole/analogs & derivatives , Sulfamethoxazole/immunology
12.
Chem Res Toxicol ; 30(12): 2174-2186, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29045131

ABSTRACT

Dapsone (DDS) causes hypersensitivity reactions in 0.5-3.6% of patients. Although clinical diagnosis is indicative of a hypersensitivity reaction, studies have not been performed to define whether dapsone or a metabolite activates specific T-cells. Thus, the aims of this study were to explore the immunogenicity DDS and nitroso DDS (DDS-NO) using peripheral blood mononuclear cells from healthy donors and splenocytes from mice and generate human T-cell clones to characterize mechanisms of T-cell activation. DDS-NO was synthesized from DDS-hydroxylamine and shown to bind to the thiol group of glutathione and human and mouse albumin through sulfonamide and N-hydroxyl sulphonamide adducts. Naïve T-cell priming to DDS and DDS-NO was successful in three human donors. DDS-specific CD4+ T-cell clones were stimulated to proliferate in response to drug via a MHC class II restricted direct binding interaction. Cross reactivity with DDS-NO, DDS-analogues, and sulfonamides was not observed. DDS-NO clones were CD4+ and CD8+, MHC class II and I restricted, respectively, and activated via a pathway dependent on covalent binding and antigen processing. DDS and DDS-NO-specific clones secreted a mixture of Th1 and Th2 cytokines, but not granzyme-B. Splenocytes from mice immunized with DDS-NO were stimulated to proliferate in vitro with the nitroso metabolite, but not DDS. In contrast, immunization with DDS did not activate T-cells. These data show that DDS- and DDS-NO-specific T-cell responses are readily detectable.


Subject(s)
Dapsone/pharmacology , Lymphocyte Activation/drug effects , Nitroso Compounds/pharmacology , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Animals , Cell Proliferation/drug effects , Cells, Cultured , Chromatography, High Pressure Liquid , Dapsone/administration & dosage , Dapsone/chemistry , Healthy Volunteers , Humans , Mass Spectrometry , Mice , Molecular Structure , Nitroso Compounds/administration & dosage , Nitroso Compounds/chemistry , Serum Albumin/chemistry , Spleen/cytology , Spleen/drug effects , T-Lymphocytes/immunology
13.
Chem Res Toxicol ; 30(1): 239-259, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27806199

ABSTRACT

The workshop on "New Approaches to Investigate Drug-Induced Hypersensitivity" was held on June 5, 2014 at the Foresight Center, University of Liverpool. The aims of the workshop were to (1) discuss our current understanding of the genetic, clinical, and chemical basis of small molecule drug hypersensitivity, (2) highlight the current status of assays that might be developed to predict potential drug immunogenicity, and (3) identify the limitations, knowledge gaps, and challenges that limit the use of these assays and utilize the knowledge gained from the workshop to develop a pathway to establish new and improved assays that better predict drug-induced hypersensitivity reactions during the early stages of drug development. This perspective reviews the clinical and immunological bases of drug hypersensitivity and summarizes various experts' views on the different topics covered during the meeting.


Subject(s)
Drug Hypersensitivity , Animals , Biological Assay , Drug Hypersensitivity/genetics , Drug Hypersensitivity/immunology , Drug Industry , Genetic Predisposition to Disease , Humans , Major Histocompatibility Complex/immunology , Phenotype , Risk Factors
16.
Hepatology ; 62(3): 887-99, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25998949

ABSTRACT

UNLABELLED: Drug-induced liver injury (DILI) frequently has a delayed onset with several human leukocyte antigen (HLA) genotypes affecting susceptibility, indicating a potential role for the adaptive immune system in the disease. The aim of this study was to investigate whether drug-responsive T lymphocytes are detectable in patients who developed DILI with the combination, antimicrobial amoxicillin-clavulanate. Lymphocytes from 6 of 7 patients were found to proliferate and/or secrete interferon-gamma (IFN-γ) when cultured with amoxicillin and/or clavulanic acid. Amoxicillin (n = 105) and clavulanic acid (n = 16) responsive CD4(+) and CD8(+) T-cell clones expressing CCR, chemokine (C-C motif) receptor 4, CCR9, and chemokine (C-X-C motif) receptor 3 were generated from patients with and without HLA risk alleles; no cross-reactivity was observed between the two drug antigens. Amoxicillin clones were found to secrete a heterogeneous panel of mediators, including IFN-γ, interleukin-22 and cytolytic molecules. In contrast, cytokine secretion by the clavulanic acid clones was more restricted. CD4(+) and CD8(+) clones were major histocompatability complex class II and I restricted, respectively, with the drug antigen being presented to CD4(+) clones in the context of HLA-DR molecules. Several pieces of evidence indicate that the clones were activated by a hapten mechanism: First, professional antigen-presenting cells (APCs) were required for optimal activation; second, pulsing APCs for 4-16 hours activated the clones; and third, inhibition of processing abrogated the proliferative response and cytokine release. CONCLUSION: Both amoxicillin- and clavulanic acid-specific T cells participate in the liver injury that develops in certain patients exposed to amoxicillin-clavulanate.


Subject(s)
Amoxicillin/adverse effects , Chemical and Drug Induced Liver Injury/immunology , Clavulanic Acid/adverse effects , Lymphocyte Activation/drug effects , Aged , Amoxicillin/immunology , Amoxicillin-Potassium Clavulanate Combination/adverse effects , Case-Control Studies , Cell Proliferation , Cells, Cultured , Clavulanic Acid/immunology , Clone Cells/drug effects , Clone Cells/immunology , Female , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Lymphocyte Activation/immunology , Male , Middle Aged , Reference Values , Sampling Studies
17.
Chem Res Toxicol ; 29(4): 505-33, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-26735163

ABSTRACT

Although idiosyncratic adverse drug reactions are rare, they are still a major concern to patient safety. Reactive metabolites are widely accepted as playing a pivotal role in the pathogenesis of idiosyncratic adverse drug reactions. While there are today well established strategies for the risk assessment of stable metabolites within the pharmaceutical industry, there is still no consensus on reactive metabolite risk assessment strategies. This is due to the complexity of the mechanisms of these toxicities as well as the difficulty in identifying and quantifying short-lived reactive intermediates such as reactive metabolites. In this review, reactive metabolite risk and hazard assessment approaches are discussed, and their pros and cons highlighted. We also discuss the nature of idiosyncratic adverse drug reactions, using acetaminophen and nefazodone to exemplify the complexity of the underlying mechanisms of reactive metabolite mediated hepatotoxicity. One of the key gaps moving forward is our understanding of and ability to predict the contribution of immune activation in idiosyncratic adverse drug reactions. Sections are included on the clinical phenotypes of immune mediated idiosyncratic adverse drug reactions and on the present understanding of immune activation by reactive metabolites. The advances being made in microphysiological systems have a great potential to transform our ability to risk assess reactive metabolites, and an overview of the key components of these systems is presented. Finally, the potential impact of systems pharmacology approaches in reactive metabolite risk assessments is highlighted.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/metabolism , Pharmaceutical Preparations/metabolism , Acetaminophen/metabolism , Acetaminophen/toxicity , Analgesics, Non-Narcotic/metabolism , Analgesics, Non-Narcotic/toxicity , Animals , Antidepressive Agents, Second-Generation/metabolism , Antidepressive Agents, Second-Generation/toxicity , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/metabolism , Drug Hypersensitivity/diagnosis , Drug Hypersensitivity/metabolism , Drug-Related Side Effects and Adverse Reactions/diagnosis , Humans , Liver/drug effects , Liver/metabolism , Piperazines , Risk Assessment/methods , Triazoles/metabolism , Triazoles/toxicity
18.
J Immunol ; 192(6): 2611-2621, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24510967

ABSTRACT

Activation of PD-1 on T cells is thought to inhibit Ag-specific T cell priming and regulate T cell differentiation. Thus, we sought to measure the drug-specific activation of naive T cells after perturbation of PD-L1/2/PD-1 binding and investigate whether PD-1 signaling influences the differentiation of T cells. Priming of naive CD4(+) and CD8(+) T cells against drug Ags was found to be more effective when PD-L1 signaling was blocked. Upon restimulation, T cells proliferated more vigorously and secreted increased levels of IFN-γ, IL-13, and IL-22 but not IL-17. Naive T cells expressed low levels of PD-1; however, a transient increase in PD-1 expression was observed during drug-specific T cell priming. Next, drug-specific responses from in vitro primed T cell clones and clones from hypersensitive patients were measured and correlated with PD-1 expression. All clones were found to secrete IFN-γ, IL-5, and IL-13. More detailed analysis revealed two different cytokine signatures. Clones secreted either FasL/IL-22 or granzyme B. The FasL/IL-22-secreting clones expressed the skin-homing receptors CCR4, CCR10, and CLA and migrated in response to CCL17/CCL27. PD-1 was stably expressed at different levels on clones; however, PD-1 expression did not correlate with the strength of the Ag-specific proliferative response or the secretion of cytokines/cytolytic molecules. This study shows that PD-L1/PD-1 binding negatively regulates the priming of drug-specific T cells. ELISPOT analysis uncovered an Ag-specific FasL/IL-22-secreting T cell subset with skin-homing properties.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Programmed Cell Death 1 Receptor/immunology , Adult , Anti-Bacterial Agents/immunology , Anti-Bacterial Agents/pharmacology , B7-H1 Antigen , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Fas Ligand Protein/immunology , Fas Ligand Protein/metabolism , Female , Flow Cytometry , Floxacillin/immunology , Floxacillin/pharmacology , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-2/immunology , Interleukin-2/metabolism , Interleukin-5/immunology , Interleukin-5/metabolism , Interleukins/immunology , Interleukins/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Programmed Cell Death 1 Receptor/metabolism , Protein Binding/drug effects , Protein Binding/immunology , Sulfamethoxazole/analogs & derivatives , Sulfamethoxazole/immunology , Sulfamethoxazole/pharmacology , Young Adult , Interleukin-22
19.
Chem Res Toxicol ; 28(1): 144-54, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25531135

ABSTRACT

Drug hypersensitivity remains a major concern, as it causes high morbidity and mortality. Understanding the mechanistic basis of drug hypersensitivity is complicated by the multiple risk factors implicated. This study utilized sulfamethoxazole (SMX) as a model drug to (1) relate SMX metabolism in antigen presenting cells (APCs) to the activation of T-cells and (2) characterize covalent adducts of SMX and myeloperoxidase, which might represent antigenic determinants for T-cells. The SMX metabolite nitroso-SMX (SMX-NO) was found to bind irreversibly to APCs. Time- and concentration-dependent drug-protein adducts were also detected when APCs were cultured with SMX. Metabolic activation of SMX was significantly reduced by the oxygenase/peroxidase inhibitor methimazole. Similarly, SMX-NO-specific T-cells were activated by APCs pulsed with SMX, and the response was inhibited by pretreatment with methimazole or glutaraldehyde, which blocks antigen processing. Western blotting, real-time polymerase chain reaction (RT-PCR), and mass spectrometry analyses suggested the presence of low concentrations of myeloperoxidase in APCs. RT-PCR revealed mRNA expression for flavin-containing monooxygenases (FMO1-5), thyroid peroxidase, and lactoperoxidase, but the corresponding proteins were not detected. Mass spectrometric characterization of SMX-NO-modified myeloperoxidase revealed the formation of N-hydroxysulfinamide adducts on Cys309 and Cys398. These data show that SMX's metabolism in APCs generates antigenic determinants for T-cells. Peptides derived from SMX-NO-modified myeloperoxidase may represent one form of functional antigen.


Subject(s)
Antigen-Presenting Cells/metabolism , Peroxidases/metabolism , Sulfamethoxazole/metabolism , B-Lymphocytes/metabolism , HL-60 Cells , Humans , Oxygenases/metabolism , Protein Binding , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL