Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Angiogenesis ; 26(1): 167-186, 2023 02.
Article in English | MEDLINE | ID: mdl-36348215

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is a genetic vascular disorder characterized by the presence of arteriovenous malformation (AVM) in multiple organs. HHT is caused by mutations in genes encoding major constituents for transforming growth factor-ß (TGF-ß) family signaling: endoglin (ENG), activin receptor-like kinase 1 (ALK1), and SMAD4. The identity of physiological ligands for this ENG-ALK1 signaling pertinent to AVM formation has yet to be clearly determined. To investigate whether bone morphogenetic protein 9 (BMP9), BMP10, or both are physiological ligands of ENG-ALK1 signaling involved in arteriovenous network formation, we generated a novel Bmp10 conditional knockout mouse strain. We examined whether global Bmp10-inducible knockout (iKO) mice develop AVMs at neonatal and adult stages in comparison with control, Bmp9-KO, and Bmp9/10-double KO (dKO) mice. Bmp10-iKO and Bmp9/10-dKO mice showed AVMs in developing retina, postnatal brain, and adult wounded skin, while Bmp9-KO did not display any noticeable vascular defects. Bmp10 deficiency resulted in increased proliferation and size of endothelial cells in AVM vessels. The impaired neurovascular integrity in the brain and retina of Bmp10-iKO and Bmp9/10-dKO mice was detected. Bmp9/10-dKO mice exhibited the lethality and vascular malformation similar to Bmp10-iKO mice, but their phenotypes were more pronounced. Administration of BMP10 protein, but not BMP9 protein, prevented retinal AVM in Bmp9/10-dKO and endothelial-specific Eng-iKO mice. These data indicate that BMP10 is indispensable for the development of a proper arteriovenous network, whereas BMP9 has limited compensatory functions for the loss of BMP10. We suggest that BMP10 is the most relevant physiological ligand of the ENG-ALK1 signaling pathway pertinent to HHT pathogenesis.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Animals , Mice , Growth Differentiation Factor 2/genetics , Growth Differentiation Factor 2/metabolism , Endothelial Cells/metabolism , Bone Morphogenetic Proteins/genetics , Telangiectasia, Hereditary Hemorrhagic/metabolism , Arteriovenous Malformations/pathology , Mice, Knockout , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism
2.
Angiogenesis ; 26(4): 493-503, 2023 11.
Article in English | MEDLINE | ID: mdl-37219736

ABSTRACT

BACKGROUND: Longitudinal mouse models of brain arteriovenous malformations (AVMs) are crucial for developing novel therapeutics and pathobiological mechanism discovery underlying brain AVM progression and rupture. The sustainability of existing mouse models is limited by ubiquitous Cre activation, which is associated with lethal hemorrhages resulting from AVM formation in visceral organs. To overcome this condition, we developed a novel experimental mouse model of hereditary hemorrhagic telangiectasia (HHT) with CreER-mediated specific, localized induction of brain AVMs. METHODS: Hydroxytamoxifen (4-OHT) was stereotactically delivered into the striatum, parietal cortex, or cerebellum of R26CreER; Alk12f/2f (Alk1-iKO) littermates. Mice were evaluated for vascular malformations with latex dye perfusion and 3D time-of-flight magnetic resonance angiography (MRA). Immunofluorescence and Prussian blue staining were performed for vascular lesion characterization. RESULTS: Our model produced two types of brain vascular malformations, including nidal AVMs (88%, 38/43) and arteriovenous fistulas (12%, 5/43), with an overall frequency of 73% (43/59). By performing stereotaxic injection of 4-OHT targeting different brain regions, Alk1-iKO mice developed vascular malformations in the striatum (73%, 22/30), in the parietal cortex (76%, 13/17), and in the cerebellum (67%, 8/12). Identical application of the stereotaxic injection protocol in reporter mice confirmed localized Cre activity near the injection site. The 4-week mortality was 3% (2/61). Seven mice were studied longitudinally for a mean (SD; range) duration of 7.2 (3; 2.3-9.5) months and demonstrated nidal stability on sequential MRA. The brain AVMs displayed microhemorrhages and diffuse immune cell invasion. CONCLUSIONS: We present the first HHT mouse model of brain AVMs that produces localized AVMs in the brain. The mouse lesions closely resemble the human lesions for complex nidal angioarchitecture, arteriovenous shunts, microhemorrhages, and inflammation. The model's longitudinal robustness is a powerful discovery resource to advance our pathomechanistic understanding of brain AVMs and identify novel therapeutic targets.


Subject(s)
Arteriovenous Fistula , Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Animals , Mice , Humans , Telangiectasia, Hereditary Hemorrhagic/pathology , Arteriovenous Malformations/pathology , Arteriovenous Fistula/pathology , Brain/pathology
3.
Circ Res ; 127(9): 1122-1137, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32762495

ABSTRACT

RATIONALE: Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease caused by mutations in ENG, ALK1, or SMAD4. Since proteins from all 3 HHT genes are components of signal transduction of TGF-ß (transforming growth factor ß) family members, it has been hypothesized that HHT is a disease caused by defects in the ENG-ALK1-SMAD4 linear signaling. However, in vivo evidence supporting this hypothesis is scarce. OBJECTIVE: We tested this hypothesis and investigated the therapeutic effects and potential risks of induced-ALK1 or -ENG overexpression (OE) for HHT. METHODS AND RESULTS: We generated a novel mouse allele (ROSA26Alk1) in which HA (human influenza hemagglutinin)-tagged ALK1 and bicistronic eGFP expression are induced by Cre activity. We examined whether ALK1-OE using the ROSA26Alk1 allele could suppress the development of arteriovenous malformations (AVMs) in wounded adult skin and developing retinas of Alk1- and Eng-inducible knockout (iKO) mice. We also used a similar approach to investigate whether ENG-OE could rescue AVMs. Biochemical and immunofluorescence analyses confirmed the Cre-dependent OE of the ALK1-HA transgene. We could not detect any pathological signs in ALK1-OE mice up to 3 months after induction. ALK1-OE prevented the development of retinal AVMs and wound-induced skin AVMs in Eng-iKO as well as Alk1-iKO mice. ALK1-OE normalized expression of SMAD and NOTCH target genes in ENG-deficient endothelial cells (ECs) and restored the effect of BMP9 (bone morphogenetic protein 9) on suppression of phosphor-AKT levels in these endothelial cells. On the other hand, ENG-OE could not inhibit the AVM development in Alk1-iKO models. CONCLUSIONS: These data support the notion that ENG and ALK1 form a linear signaling pathway for the formation of a proper arteriovenous network during angiogenesis. We suggest that ALK1 OE or activation can be an effective therapeutic strategy for HHT. Further research is required to study whether this therapy could be translated into treatment for humans.


Subject(s)
Activin Receptors, Type II/metabolism , Arteriovenous Malformations/prevention & control , Endothelial Cells/metabolism , Telangiectasia, Hereditary Hemorrhagic/metabolism , Activin Receptors, Type II/deficiency , Activin Receptors, Type II/genetics , Alleles , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Arteriovenous Malformations/genetics , Disease Models, Animal , Endoglin/deficiency , Endoglin/genetics , Endoglin/metabolism , Green Fluorescent Proteins/metabolism , Growth Differentiation Factor 2/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA, Untranslated , Receptors, Notch/genetics , Receptors, Notch/metabolism , Retinal Vessels/abnormalities , Signal Transduction , Skin/blood supply , Skin/injuries , Smad4 Protein/genetics , Smad4 Protein/metabolism , Telangiectasia, Hereditary Hemorrhagic/genetics , Transforming Growth Factor beta
4.
Neurosurg Focus ; 53(1): E2, 2022 07.
Article in English | MEDLINE | ID: mdl-35901735

ABSTRACT

A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of "omics" has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.


Subject(s)
Intracranial Arteriovenous Malformations , Brain/pathology , Humans , Intracranial Arteriovenous Malformations/complications , Intracranial Arteriovenous Malformations/genetics , Neovascularization, Pathologic
5.
Angiogenesis ; 23(3): 339-355, 2020 08.
Article in English | MEDLINE | ID: mdl-32112176

ABSTRACT

BACKGROUND: TMEM100 is identified as a downstream gene of bone morphogenetic protein 9 (BMP9) signaling via activin receptor-like kinase 1 (ALK1), which is known to participate in lymphangiogenesis as well as angiogenesis. TMEM100 has been shown to be important for blood vessel formation and maintenance, but its role in the development of lymphatic vasculature remains unknown. The objective is to investigate the role of TMEM100 in development of the lymphatic system. METHODS AND RESULTS: Global Tmem100 gene deletion was induced by tamoxifen on 10.5 days post-coitus. Tmem100-inducible knockout (iKO) embryos in embryonic days (E)14.5-16.5 exhibited edema and blood-filled enlarged lymphatics with misconnections between veins and lymphatic vessels. For a reciprocal approach, we have generated a novel mouse line in which TMEM100 overexpression (OE) can be induced in endothelial cells by intercrossing with Tie2-Cre driver. TMEM100-OE embryos at E12.5-14.5 exhibited edema with small size and number of lymphatic vessels, the exact opposite phenotypes of Tmem100-iKOs. In Tmem100-iKO embryos, the number of progenitors of lymphatic endothelial cells (LECs) in the cardinal vein was increased, while it was decreased in TMEM100-OE embryos. The activity of NOTCH signaling, which limits the number of progenitors of LECs in the cardinal vein, was decreased in Tmem100-iKO embryos, whereas it was increased in TMEM100-OE embryos. CONCLUSION: TMEM100 plays an important role in the specification of LECs in the cardinal veins, at least in part, by regulating the NOTCH signaling.


Subject(s)
Endothelial Cells/metabolism , Endothelial Progenitor Cells/metabolism , Lymphatic Vessels/metabolism , Membrane Proteins/metabolism , Animals , Female , Male , Membrane Proteins/genetics , Mice , Mice, Knockout
6.
Angiogenesis ; 22(1): 145-155, 2019 02.
Article in English | MEDLINE | ID: mdl-30191360

ABSTRACT

Pazopanib (Votrient) is an orally administered tyrosine kinase inhibitor that blocks VEGF receptors potentially serving as anti-angiogenic treatment for hereditary hemorrhagic telangiectasia (HHT). We report a prospective, multi-center, open-label, dose-escalating study [50 mg, 100 mg, 200 mg, and 400 mg], designed as a proof-of-concept study to demonstrate efficacy of pazopanib on HHT-related bleeding, and to measure safety. Patients, recruited at 5 HHT Centers, required ≥ 2 Curacao criteria AND [anemia OR severe epistaxis with iron deficiency]. Co-primary outcomes, hemoglobin (Hgb) and epistaxis severity, were measured during and after treatment, and compared to baseline. Safety monitoring occurred every 1.5 weeks. Seven patients were treated with 50 mg pazopanib daily. Six/seven showed at least 50% decrease in epistaxis duration relative to baseline at some point during study; 3 showed at least 50% decrease in duration during Weeks 11 and 12. Six patients showed a decrease in ESS of > 0.71 (MID) relative to baseline at some point during study; 3/6 showed a sustained improvement. Four patients showed > 2 gm improvement in Hgb relative to baseline at one or more points during study. Health-related QOL scores improved on all SF-36 domains at Week 6 and/or Week 12, except general health (unchanged). There were 19 adverse events (AE) including one severe AE (elevated LFTs, withdrawn from dosing at 43 days); with no serious AE. In conclusion, we observed an improvement in Hgb and/or epistaxis in all treated patients. This occurred at a dose much lower than typically used for oncologic indications, with no serious AE. Further studies of pazopanib efficacy are warranted.


Subject(s)
Hemorrhage , Pyrimidines , Sulfonamides , Telangiectasia, Hereditary Hemorrhagic , Adult , Female , Hemorrhage/blood , Hemorrhage/drug therapy , Humans , Indazoles , Male , Middle Aged , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Telangiectasia, Hereditary Hemorrhagic/blood , Telangiectasia, Hereditary Hemorrhagic/drug therapy
7.
Int J Mol Sci ; 20(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731545

ABSTRACT

Arteriovenous malformations (AVMs) are abnormal connections of vessels that shunt blood directly from arteries into veins. Rupture of brain AVMs (bAVMs) can cause life-threatening intracranial bleeding. Even though the majority of bAVM cases are sporadic without a family history, some cases are familial. Most of the familial cases of bAVMs are associated with a genetic disorder called hereditary hemorrhagic telangiectasia (HHT). The mechanism of bAVM formation is not fully understood. The most important advances in bAVM basic science research is the identification of somatic mutations of genes in RAS-MAPK pathways. However, the mechanisms by which mutations of these genes lead to AVM formation are largely unknown. In this review, we summarized the latest advance in bAVM studies and discussed some pathways that play important roles in bAVM pathogenesis. We also discussed the therapeutic implications of these pathways.


Subject(s)
Intracranial Arteriovenous Malformations , Intracranial Hemorrhages , MAP Kinase Signaling System/genetics , Mutation , Telangiectasia, Hereditary Hemorrhagic , Female , Humans , Intracranial Arteriovenous Malformations/genetics , Intracranial Arteriovenous Malformations/metabolism , Intracranial Arteriovenous Malformations/pathology , Intracranial Arteriovenous Malformations/therapy , Intracranial Hemorrhages/genetics , Intracranial Hemorrhages/metabolism , Intracranial Hemorrhages/pathology , Intracranial Hemorrhages/therapy , Male , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/metabolism , Telangiectasia, Hereditary Hemorrhagic/pathology , Telangiectasia, Hereditary Hemorrhagic/therapy
8.
Development ; 142(24): 4363-73, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26586223

ABSTRACT

Angiogenesis in the developing central nervous system (CNS) is regulated by neuroepithelial cells, although the genes and pathways that couple these cells to blood vessels remain largely uncharacterized. Here, we have used biochemical, cell biological and molecular genetic approaches to demonstrate that ß8 integrin (Itgb8) and neuropilin 1 (Nrp1) cooperatively promote CNS angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells. ß8 integrin in the neuroepithelium promotes the activation of extracellular matrix (ECM)-bound latent transforming growth factor ß (TGFß) ligands and stimulates TGFß receptor signaling in endothelial cells. Nrp1 in endothelial cells suppresses TGFß activation and signaling by forming intercellular protein complexes with ß8 integrin. Cell type-specific ablation of ß8 integrin, Nrp1, or canonical TGFß receptors results in pathological angiogenesis caused by defective neuroepithelial cell-endothelial cell adhesion and imbalances in canonical TGFß signaling. Collectively, these data identify a paracrine signaling pathway that links the neuroepithelium to blood vessels and precisely balances TGFß signaling during cerebral angiogenesis.


Subject(s)
Brain/blood supply , Brain/metabolism , Integrin beta Chains/metabolism , Neovascularization, Physiologic , Neuropilin-1/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Animals , Brain/pathology , Cell Adhesion , Embryo Loss/pathology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Deletion , Male , Mice , Models, Biological , Neuroepithelial Cells/cytology , Neuroepithelial Cells/metabolism , Zebrafish
10.
Arterioscler Thromb Vasc Biol ; 36(4): 707-17, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26821948

ABSTRACT

OBJECTIVE: To determine the role of Gja5 that encodes for the gap junction protein connexin40 in the generation of arteriovenous malformations in the hereditary hemorrhagic telangiectasia type 2 (HHT2) mouse model. APPROACH AND RESULTS: We identified GJA5 as a target gene of the bone morphogenetic protein-9/activin receptor-like kinase 1 signaling pathway in human aortic endothelial cells and importantly found that connexin40 levels were particularly low in a small group of patients with HHT2. We next took advantage of the Acvrl1(+/-) mutant mice that develop lesions similar to those in patients with HHT2 and generated Acvrl1(+/-); Gja5(EGFP/+) mice. Gja5 haploinsufficiency led to vasodilation of the arteries and rarefaction of the capillary bed in Acvrl1(+/-) mice. At the molecular level, we found that reduced Gja5 in Acvrl1(+/-) mice stimulated the production of reactive oxygen species, an important mediator of vessel remodeling. To normalize the altered hemodynamic forces in Acvrl1(+/-); Gja5(EGFP/+) mice, capillaries formed transient arteriovenous shunts that could develop into large malformations when exposed to environmental insults. CONCLUSIONS: We identified GJA5 as a potential modifier gene for HHT2. Our findings demonstrate that Acvrl1 haploinsufficiency combined with the effects of modifier genes that regulate vessel caliber is responsible for the heterogeneity and severity of the disease. The mouse models of HHT have led to the proposal that 3 events-heterozygosity, loss of heterozygosity, and angiogenic stimulation-are necessary for arteriovenous malformation formation. Here, we present a novel 3-step model in which pathological vessel caliber and consequent altered blood flow are necessary events for arteriovenous malformation development.


Subject(s)
Activin Receptors, Type II/metabolism , Activin Receptors, Type I/metabolism , Arteriovenous Malformations/enzymology , Connexins/metabolism , Endothelial Cells/enzymology , Retinal Vessels/enzymology , Telangiectasia, Hereditary Hemorrhagic/enzymology , Activin Receptors, Type I/genetics , Activin Receptors, Type II/genetics , Animals , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Cells, Cultured , Connexins/genetics , Disease Models, Animal , Genetic Predisposition to Disease , Haploinsufficiency , Humans , Mice, Mutant Strains , Mice, Transgenic , Neovascularization, Pathologic , Phenotype , RNA Interference , Reactive Oxygen Species/metabolism , Retinal Vessels/pathology , Signal Transduction , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Transfection , Vascular Remodeling , Gap Junction alpha-5 Protein
11.
Heart Vessels ; 32(5): 628-636, 2017 May.
Article in English | MEDLINE | ID: mdl-28213819

ABSTRACT

Activin like kinase-1 (AlK-1) mediates signaling via the transforming growth factor beta (TGFß) family of ligands. AlK-1 activity promotes endothelial proliferation and migration. Reduced AlK-1 activity is associated with arteriovenous malformations. No studies have examined the effect of global AlK-1 deletion on indices of cardiac remodeling. We hypothesized that reduced levels of AlK-1 promote maladaptive cardiac remodeling. To test this hypothesis, we employed AlK-1 conditional knockout mice (cKO) harboring the ROSA26-CreER knock-in allele, whereby a single dose of intraperitoneal tamoxifen triggered ubiquitous Cre recombinase-mediated excision of floxed AlK-1 alleles. Tamoxifen treated wild-type (WT-TAM; n = 5) and vehicle treated AlK-1-cKO mice (cKO-CON; n = 5) served as controls for tamoxifen treated AlK-1-cKO mice (cKO-TAM; n = 15). AlK-1 cKO-TAM mice demonstrated reduced 14-day survival compared to cKO-CON controls (13 vs 100%, respectively, p < 0.01). Seven days after treatment, cKO-TAM mice exhibited reduced left ventricular (LV) fractional shortening, progressive LV dilation, and gastrointestinal bleeding. After 14 days total body mass was reduced, but LV and lung mass increased in cKO-TAM not cKO-CON mice. Peak LV systolic pressure, contractility, and arterial elastance were reduced, but LV end-diastolic pressure and stroke volume were increased in cKO-TAM, not cKO-CON mice. LV AlK-1 mRNA levels were reduced in cKO-TAM, not cKO-CON mice. LV levels of other TGFß-family ligands and receptors (AlK5, TBRII, BMPRII, Endoglin, BMP7, BMP9, and TGFß1) were unchanged between groups. Cardiomyocyte area and LV levels of BNP were increased in cKO-TAM mice, but LV levels of ß-MHC and SERCA were unchanged. No increase in markers of cardiac fibrosis, Type I collagen, CTGF, or PAI-1, were observed between groups. No differences were observed for any variable studied between cKO-CON and WT-TAM mice. Global deletion of AlK-1 is associated with the development of high output heart failure without maladaptive remodeling. Future studies exploring the functional role of AlK-1 in cardiac remodeling independent of systemic AVMs are required.


Subject(s)
Activin Receptors, Type I/genetics , Gene Expression Regulation , Heart Failure/genetics , RNA/genetics , Ventricular Function, Left/physiology , Ventricular Remodeling/physiology , Activin Receptors, Type I/biosynthesis , Activin Receptors, Type II , Alleles , Animals , Disease Models, Animal , Disease Progression , Heart Failure/metabolism , Heart Failure/physiopathology , Mice, Knockout , Real-Time Polymerase Chain Reaction , Signal Transduction
12.
Angiogenesis ; 19(4): 451-461, 2016 10.
Article in English | MEDLINE | ID: mdl-27325285

ABSTRACT

An abnormally high number of macrophages are present in human brain arteriovenous malformations (bAVM) with or without evidence of prior hemorrhage, causing unresolved inflammation that may enhance abnormal vascular remodeling and exacerbate the bAVM phenotype. The reasons for macrophage accumulation at the bAVM sites are not known. We tested the hypothesis that persistent infiltration and pro-inflammatory differentiation of monocytes in angiogenic tissues increase the macrophage burden in bAVM using two mouse models and human monocytes. Mouse bAVM was induced through deletion of AVM causative genes, Endoglin (Eng) globally or Alk1 focally, plus brain focal angiogenic stimulation. An endothelial cell and vascular smooth muscle cell co-culture system was used to analyze monocyte differentiation in the angiogenic niche. After angiogenic stimulation, the Eng-deleted mice had fewer CD68(+) cells at 2 weeks (P = 0.02), similar numbers at 4 weeks (P = 0.97), and more at 8 weeks (P = 0.01) in the brain angiogenic region compared with wild-type (WT) mice. Alk1-deficient mice also had a trend toward more macrophages/microglia 8 weeks (P = 0.064) after angiogenic stimulation and more RFP(+) bone marrow-derived macrophages than WT mice (P = 0.01). More CD34(+) cells isolated from peripheral blood of patients with ENG or ALK1 gene mutation differentiated into macrophages than those from healthy controls (P < 0.001). These data indicate that persistent infiltration and pro-inflammatory differentiation of monocytes might contribute to macrophage accumulation in bAVM. Blocking macrophage homing to bAVM lesions should be tested as a strategy to reduce the severity of bAVM.


Subject(s)
Intracranial Arteriovenous Malformations/pathology , Monocytes/pathology , Activin Receptors, Type I/deficiency , Activin Receptors, Type I/genetics , Activin Receptors, Type II , Animals , Cell Differentiation , Coculture Techniques , Disease Models, Animal , Endoglin/deficiency , Endoglin/genetics , Endothelial Cells/pathology , Humans , Intracranial Arteriovenous Malformations/genetics , Intracranial Arteriovenous Malformations/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Mice, Transgenic , Myocytes, Smooth Muscle/pathology , Neovascularization, Pathologic/genetics
13.
Proc Natl Acad Sci U S A ; 110(47): 18940-5, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24133138

ABSTRACT

Lymphatic vessels (LVs) play critical roles in the maintenance of fluid homeostasis and in pathological conditions, including cancer metastasis. Although mutations in ALK1, a member of the transforming growth factor (TGF)-ß/bone morphogenetic protein (BMP) receptor family, have been linked to hereditary hemorrhagic telangiectasia, a human vascular disease, the roles of activin receptor-like kinase 1 (ALK-1) signals in LV formation largely remain to be elucidated. We show that ALK-1 signals inhibit LV formation, and LVs were enlarged in multiple organs in Alk1-depleted mice. These inhibitory effects of ALK-1 signaling were mediated by BMP-9, which decreased the number of cultured lymphatic endothelial cells. Bmp9-deficient mouse embryos consistently exhibited enlarged dermal LVs. BMP-9 also inhibited LV formation during inflammation and tumorigenesis. BMP-9 downregulated the expression of the transcription factor prospero-related homeobox 1, which is necessary to maintain lymphatic endothelial cell identity. Furthermore, silencing prospero-related homeobox 1 expression inhibited lymphatic endothelial cell proliferation. Our findings reveal a unique molecular basis for the physiological and pathological roles of BMP-9/ALK-1 signals in LV formation.


Subject(s)
Activin Receptors, Type II/metabolism , Growth Differentiation Factor 2/metabolism , Lymphatic Vessels/physiology , Neovascularization, Pathologic/physiopathology , Neovascularization, Physiologic/physiology , Peritonitis/physiopathology , Signal Transduction/physiology , Analysis of Variance , Animals , DNA Primers/genetics , Diaphragm/pathology , Gene Expression Profiling , HEK293 Cells , Histological Techniques , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Fluorescence , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
14.
JAMA ; 316(9): 943-51, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27599329

ABSTRACT

IMPORTANCE: Epistaxis is a major factor negatively affecting quality of life in patients with hereditary hemorrhagic telangiectasia (HHT; also known as Osler-Weber-Rendu disease). Optimal treatment for HHT-related epistaxis is uncertain. OBJECTIVE: To determine whether topical therapy with any of 3 drugs with differing mechanisms of action is effective in reducing HHT-related epistaxis. DESIGN, SETTING, AND PARTICIPANTS: The North American Study of Epistaxis in HHT was a double-blind, placebo-controlled randomized clinical trial performed at 6 HHT centers of excellence. From August 2011 through March 2014, there were 121 adult patients who met the clinical criteria for HHT and had experienced HHT-related epistaxis with an Epistaxis Severity Score of at least 3.0. Follow-up was completed in September 2014. INTERVENTIONS: Patients received twice-daily nose sprays for 12 weeks with either bevacizumab 1% (4 mg/d), estriol 0.1% (0.4 mg/d), tranexamic acid 10% (40 mg/d), or placebo (0.9% saline). MAIN OUTCOMES AND MEASURES: The primary outcome was median weekly epistaxis frequency during weeks 5 through 12. Secondary outcomes included median duration of epistaxis during weeks 5 through 12, Epistaxis Severity Score, level of hemoglobin, level of ferritin, need for transfusion, emergency department visits, and treatment failure. RESULTS: Among the 121 patients who were randomized (mean age, 52.8 years [SD, 12.9 years]; 44% women with a median of 7.0 weekly episodes of epistaxis [interquartile range {IQR}, 3.0-14.0]), 106 patients completed the study duration for the primary outcome measure (43 were women [41%]). Drug therapy did not significantly reduce epistaxis frequency (P = .97). After 12 weeks of treatment, the median weekly number of bleeding episodes was 7.0 (IQR, 4.5-10.5) for patients in the bevacizumab group, 8.0 (IQR, 4.0-12.0) for the estriol group, 7.5 (IQR, 3.0-11.0) for the tranexamic acid group, and 8.0 (IQR, 3.0-14.0) for the placebo group. No drug treatment was significantly different from placebo for epistaxis duration. All groups had a significant improvement in Epistaxis Severity Score at weeks 12 and 24. There were no significant differences between groups for hemoglobin level, ferritin level, treatment failure, need for transfusion, or emergency department visits. CONCLUSIONS AND RELEVANCE: Among patients with HHT, there were no significant between-group differences in the use of topical intranasal treatment with bevacizumab vs estriol vs tranexamic acid vs placebo and epistaxis frequency. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01408030.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Bevacizumab/administration & dosage , Epistaxis/drug therapy , Telangiectasia, Hereditary Hemorrhagic/complications , Administration, Intranasal , Administration, Topical , Adult , Aged , Antifibrinolytic Agents/administration & dosage , Blood Transfusion , Double-Blind Method , Epistaxis/etiology , Female , Humans , Male , Middle Aged , Quality of Life , Severity of Illness Index , Tranexamic Acid/administration & dosage , Treatment Outcome
15.
Arterioscler Thromb Vasc Biol ; 34(10): 2232-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25082229

ABSTRACT

OBJECTIVE: Hereditary hemorrhagic telangiectasia is a genetic disorder characterized by visceral and mucocutaneous arteriovenous malformations (AVMs). Clinically indistinguishable hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 are caused by mutations in ENG and ALK1, respectively. In this study, we have compared the development of visceral and mucocutaneous AVMs in adult stages between Eng- and Alk1-inducible knockout (iKO) models. APPROACH AND RESULTS: Eng or Alk1 were deleted from either vascular endothelial cells (ECs) or smooth muscle cells in adult stages using Scl-CreER and Myh11-CreER lines, respectively. Latex perfusion and intravital spectral imaging in a dorsal skinfold window chamber system were used to visualize remodeling vasculature during AVM formation. Global Eng deletion resulted in lethality with visceral AVMs and wound-induced skin AVMs. Deletion of Alk1 or Eng in ECs, but not in smooth muscle cells, resulted in wound-induced skin AVMs. Visceral AVMs were observed in EC-specific Alk1-iKO but not in Eng-iKO. Intravital spectral imaging revealed that Eng-iKO model exhibited more dynamic processes for AVM development when compared with Alk1-iKO model. CONCLUSIONS: Both Alk1- and Eng-deficient models require a secondary insult, such as wounding, and ECs are the primary cell type responsible for the pathogenesis. However, Alk1 but not Eng deletion in ECs results in visceral AVMs.


Subject(s)
Arteriovenous Malformations/pathology , Telangiectasia, Hereditary Hemorrhagic/pathology , Activin Receptors, Type I/deficiency , Activin Receptors, Type I/genetics , Activin Receptors, Type II , Animals , Arteriovenous Malformations/genetics , Arteriovenous Malformations/metabolism , Cells, Cultured , Disease Models, Animal , Endoglin , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/metabolism , Time Factors , Wound Healing
17.
Angiogenesis ; 17(4): 823-830, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24957885

ABSTRACT

Arteriovenous malformation (AVM) refers to a vascular anomaly where arteries and veins are directly connected through a complex, tangled web of abnormal AV fistulae without a normal capillary network. Hereditary hemorrhagic telangiectasia (HHT) types 1 and 2 arise from heterozygous mutations in endoglin (ENG) and activin receptor-like kinase 1 (ALK1), respectively. HHT patients possess AVMs in various organs, and telangiectases (small AVMs) along the mucocutaneous surface. Understanding why and how AVMs develop is crucial for developing therapies to inhibit the formation, growth, or maintenance of AVMs in HHT patients. Previously, we have shown that secondary factors such as wounding are required for Alk1-deficient vessels to develop skin AVMs. Here, we present evidences that AVMs establish from nascent arteries and veins rather than from remodeling of a preexistent capillary network in the wound-induced skin AVM model. We also show that VEGF can mimic the wound effect on skin AVM formation, and VEGF-neutralizing antibody can prevent skin AVM formation and ameliorate internal bleeding in Alk1-deficient adult mice. With topical applications at different stages of AVM development, we demonstrate that the VEGF blockade can prevent the formation of AVM and cease the progression of AVM development. Taken together, the presented experimental model is an invaluable system for precise molecular mechanism of action of VEGF blockades as well as for preclinical screening of drug candidates for epistaxis and gastrointestinal bleedings.


Subject(s)
Arteriovenous Malformations/metabolism , Telangiectasia, Hereditary Hemorrhagic/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antibodies, Neutralizing/pharmacology , Brain/pathology , Disease Models, Animal , Disease Progression , Heterozygote , Mice , Mice, Knockout , Mutation , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A/metabolism , Wound Healing
18.
Arterioscler Thromb Vasc Biol ; 33(2): 305-10, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23241407

ABSTRACT

OBJECTIVE: Vessels in brain arteriovenous malformations are prone to rupture. The underlying pathogenesis is not clear. Hereditary hemorrhagic telangiectasia type 2 patients with activin receptor-like kinase 1 (Alk1) mutation have a higher incidence of brain arteriovenous malformation than the general population. We tested the hypothesis that vascular endothelial growth factor impairs vascular integrity in the Alk1-deficient brain through reduction of mural cell coverage. METHODS AND RESULTS: Adult Alk1(1f/2f) mice (loxP sites flanking exons 4-6) and wild-type mice were injected with 2×10(7) PFU adenovious-cre recombinase and 2×10(9) genome copies of adeno-associated virus-vascular endothelial growth factor to induce focal homozygous Alk1 deletion (in Alk1(1f/2f) mice) and angiogenesis. Brain vessels were analyzed 8 weeks later. Compared with wild-type mice, the Alk1-deficient brain had more fibrin (99±30×10(3) pixels/mm(2) versus 40±13×10(3); P=0.001), iron deposition (508±506 pixels/mm(2) versus 6±49; P=0.04), and Iba1(+) microglia/macrophage infiltration (888±420 Iba1(+) cells/mm(2) versus 240±104 Iba1(+); P=0.001) after vascular endothelial growth factor stimulation. In the angiogenic foci, the Alk1-deficient brain had more α-smooth muscle actin negative vessels (52±9% versus 12±7%, P<0.001), fewer vascular-associated pericytes (503±179/mm(2) versus 931±115, P<0.001), and reduced platelet-derived growth factor receptor-ß expression. CONCLUSIONS: Reduction of mural cell coverage in response to vascular endothelial growth factor stimulation is a potential mechanism for the impairment of vessel wall integrity in hereditary hemorrhagic telangiectasia type 2-associated brain arteriovenous malformation.


Subject(s)
Activin Receptors, Type I/deficiency , Blood Vessels/enzymology , Brain/blood supply , Neovascularization, Pathologic , Pericytes/enzymology , Telangiectasia, Hereditary Hemorrhagic/enzymology , Vascular Endothelial Growth Factor A/metabolism , Actins/metabolism , Activin Receptors, Type I/genetics , Activin Receptors, Type II , Animals , Becaplermin , Blood Vessels/pathology , Dependovirus/genetics , Disease Models, Animal , Fibrin/metabolism , Gene Transfer Techniques , Genetic Vectors , Iron/metabolism , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Pericytes/pathology , Proto-Oncogene Proteins c-sis/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Vascular Endothelial Growth Factor A/genetics
19.
Proc Natl Acad Sci U S A ; 108(37): 15231-6, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21896759

ABSTRACT

Angiogenesis is meticulously controlled by a fine balance between positive and negative regulatory activities. Vascular endothelial growth factor (VEGF) is a predominant angiogenic factor and its dosage is precisely regulated during normal vascular formation. In cancer, VEGF is commonly overproduced, resulting in abnormal neovascularization. VEGF is induced in response to various stimuli including hypoxia; however, very little is known about the mechanisms that confine its induction to ensure proper angiogenesis. Chromatin insulation is a key transcription mechanism that prevents promiscuous gene activation by interfering with the action of enhancers. Here we show that the chromatin insulator-binding factor CTCF binds to the proximal promoter of VEGF. Consistent with the enhancer-blocking mode of chromatin insulators, CTCF has little effect on basal expression of VEGF but specifically affects its activation by enhancers. CTCF knockdown cells are sensitized for induction of VEGF and exhibit elevated proangiogenic potential. Cancer-derived CTCF missense mutants are mostly defective in blocking enhancers at the VEGF locus. Moreover, during mouse retinal development, depletion of CTCF causes excess angiogenesis. Therefore, CTCF-mediated chromatin insulation acts as a crucial safeguard against hyperactivation of angiogenesis.


Subject(s)
Chromatin/metabolism , Insulator Elements/genetics , Neovascularization, Pathologic/genetics , Repressor Proteins/metabolism , Zinc Fingers/genetics , Animals , CCCTC-Binding Factor , Cell Line , Enhancer Elements, Genetic/genetics , Genes, Reporter/genetics , Humans , Mice , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Promoter Regions, Genetic/genetics , Protein Binding , Retina/growth & development , Retina/pathology , Transcription, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
20.
Ann Neurol ; 69(6): 954-62, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21437931

ABSTRACT

OBJECTIVE: Brain arteriovenous malformations (bAVMs) are an important cause of hemorrhagic stroke. The underlying mechanisms are not clear. No animal model for adult bAVM is available for mechanistic exploration. Patients with hereditary hemorrhagic telangiectasia type 2 (HHT2) with activin receptor-like kinase 1 (ALK1; ACVRL1) mutations have a higher incidence of bAVM than the general population. We tested the hypothesis that vascular endothelial growth factor (VEGF) stimulation with regional homozygous deletion of Alk1 induces severe dysplasia in the adult mouse brain, akin to human bAVM. METHODS: Alk1(2f/2f) (exons 4-6 flanked by loxP sites) and wild-type (WT) mice (8-10 weeks old) were injected with adenoviral vector expressing Cre recombinase (Ad-Cre; 2 × 10(7) plaque forming units [PFU]) and adeno-associated viral vectors expressing VEGF (AAV-VEGF; 2 × 10(9) genome copies) into the basal ganglia. At 8 weeks, blood vessels were analyzed. RESULTS: Gross vascular irregularities were seen in Alk1(2f/2f) mouse brain injected with Ad-Cre and AAV-VEGF. The vessels were markedly enlarged with abnormal patterning resembling aspects of the human bAVM phenotype, displayed altered expression of the arterial and venous markers (EphB4 and Jagged-1), and showed evidence of arteriovenous shunting. Vascular irregularities were not seen in similarly treated WT mice. INTERPRETATION: Our data indicate that postnatal, adult formation of the human disease, bAVM, is possible, and that both genetic mutation and angiogenic stimulation are necessary for lesion development. Our work not only provides a testable adult mouse bAVM model for the first time, but also suggests that specific medical therapy can be developed to slow bAVM growth and potentially stabilize the rupture-prone abnormal vasculature.


Subject(s)
Arteriovenous Malformations/pathology , Brain/pathology , Disease Models, Animal , Activin Receptors, Type II/genetics , Animals , Arteriovenous Malformations/chemically induced , Arteriovenous Malformations/genetics , Brain/drug effects , Brain/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Mutation/genetics , Neovascularization, Pathologic/chemically induced , Receptor, EphB4/genetics , Receptor, EphB4/metabolism , Serrate-Jagged Proteins , Transduction, Genetic/methods , Vascular Endothelial Growth Factor A/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL