Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Cell ; 84(15): 2949-2965.e10, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39053456

ABSTRACT

The eukaryotic nucleus has a highly organized structure. Although the spatiotemporal arrangement of spliceosomes on nascent RNA drives splicing, the nuclear architecture that directly supports this process remains unclear. Here, we show that RNA-binding proteins (RBPs) assembled on RNA form meshworks in human and mouse cells. Core and accessory RBPs in RNA splicing make two distinct meshworks adjacently but distinctly distributed throughout the nucleus. This is achieved by mutual exclusion dynamics between the charged and uncharged intrinsically disordered regions (IDRs) of RBPs. These two types of meshworks compete for spatial occupancy on pre-mRNA to regulate splicing. Furthermore, the optogenetic enhancement of the RBP meshwork causes aberrant splicing, particularly of genes involved in neurodegeneration. Genetic mutations associated with neurodegenerative diseases are often found in the IDRs of RBPs, and cells harboring these mutations exhibit impaired meshwork formation. Our results uncovered the spatial organization of RBP networks to drive RNA splicing.


Subject(s)
Cell Nucleus , RNA Splicing , RNA-Binding Proteins , Humans , Cell Nucleus/metabolism , Cell Nucleus/genetics , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , RNA Precursors/metabolism , RNA Precursors/genetics , Mutation , Spliceosomes/metabolism , Spliceosomes/genetics , HeLa Cells , HEK293 Cells
2.
Biochem Biophys Res Commun ; 731: 150400, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39024975

ABSTRACT

Neuromuscular signal transmission is affected in various diseases including myasthenia gravis, congenital myasthenic syndromes, and sarcopenia. We used an ATF2-luciferase system to monitor the phosphorylation of MuSK in HEK293 cells introduced with MUSK and LRP4 cDNAs to find novel chemical compounds that enhanced agrin-mediated acetylcholine receptor (AChR) clustering. Four compounds with similar chemical structures carrying benzene rings and heterocyclic rings increased the luciferase activities 8- to 30-folds, and two of them showed continuously graded dose dependence. The effects were higher than that of disulfiram, a clinically available aldehyde dehydrogenase inhibitor, which we identified to be the most competent preapproved drug to enhance ATF2-luciferase activity in the same assay system. In C2C12 myotubes, all the compounds increased the area, intensity, length, and number of AChR clusters. Three of the four compounds increased the phosphorylation of MuSK, but not of Dok7, JNK. ERK, or p38. Monitoring cell toxicity using the neurite elongation of NSC34 neuronal cells as a surrogate marker showed that all the compounds had no effects on the neurite elongation up to 1 µM. Extensive docking simulation and binding structure prediction of the four compounds with all available human proteins using AutoDock Vina and DiffDock showed that the four compounds were unlikely to directly bind to MuSK or Dok7, and the exact target remained unknown. The identified compounds are expected to serve as a seed to develop a novel therapeutic agent to treat defective NMJ signal transmission.


Subject(s)
Receptors, Nicotinic , Humans , HEK293 Cells , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Animals , Mice , Phosphorylation/drug effects , Molecular Docking Simulation , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/chemistry
3.
J Hum Genet ; 69(6): 235-244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424183

ABSTRACT

Dyssegmental dysplasia (DD) is a severe skeletal dysplasia comprised of two subtypes: lethal Silverman-Handmaker type (DDSH) and nonlethal Rolland-Desbuquois type (DDRD). DDSH is caused by biallelic pathogenic variants in HSPG2 encoding perlecan, whereas the genetic cause of DDRD remains undetermined. Schwartz-Jampel syndrome (SJS) is also caused by biallelic pathogenic variants in HSPG2 and is an allelic disorder of DDSH. In SJS and DDSH, 44 and 8 pathogenic variants have been reported in HSPG2, respectively. Here, we report that five patients with DDRD carried four pathogenic variants in HSPG2: c.9970 G > A (p.G3324R), c.559 C > T (p.R187X), c7006 + 1 G > A, and c.11562 + 2 T > G. Two patients were homozygous for p.G3324R, and three patients were heterozygous for p.G3324R. Haplotype analysis revealed a founder haplotype spanning 85,973 bp shared in the five patients. SJS, DDRD, and DDSH are allelic disorders with pathogenic variants in HSPG2.


Subject(s)
Haplotypes , Heparan Sulfate Proteoglycans , Osteochondrodysplasias , Female , Humans , Male , Alleles , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/pathology , Founder Effect , Heparan Sulfate Proteoglycans/genetics , Mutation , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Fetal Diseases
4.
Brain Nerve ; 76(1): 41-45, 2024 Jan.
Article in Japanese | MEDLINE | ID: mdl-38191138

ABSTRACT

Congenital myasthenic syndromes (CMS) are characterized by congenital defects in the neuromuscular signal transmission and are caused by pathogenic variants in 36 genes. Recently identified forms of CMS include TOR1AIP1-CMS, CHD8-CMS, PURA-CMS, and TEFM-CMS. Most forms of CMS are caused by autosomal recessive variants, whereas four forms of CMS are caused by autosomal dominant variants, in which adult-onset cases are not rare. As myasthenic features are not always observed and muscle hypotrophy is sometimes observed, CMS should be considered in differential diagnosis of congenital myopathies and other neuromuscular diseases. Low- and high-frequency repetitive nerve stimulation is essential to diagnose CMS for patients who develop muscle weakness at less than 2 years of age. Tubular aggregates are observed in muscle biopsy in four forms of CMS, and serum CK levels are elevated in some forms of CMS. As rational therapies are available for most forms of CMS, identification of causative gene variants by genetic analysis is required.


Subject(s)
Myasthenic Syndromes, Congenital , Adult , Humans , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/genetics , Biopsy , Diagnosis, Differential , Muscle Weakness , Muscular Atrophy
5.
Asian J Psychiatr ; 96: 104036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555753

ABSTRACT

Mitochondrial dysfunction has been suggested to play a role in depression pathogenesis. This clinical trial (jRCTs042220011) was conducted to evaluate whether depression symptoms could be alleviated by an Extremely Low Frequency, Extremely Low Magnetic Environment (ELF-ELME), which has been found in basic research studies to enhance mitochondrial membrane potential. Participants were exposed to the ELF-ELME via a head-mounted magnetic field device (10 µTesla, 4 ms, 1-8 Hz/8 s) worn for 2 h per day for 8 consecutive weeks. Four male patients with treatment-resistant depression were enrolled. Significant reductions from baseline in the average total Montgomery-Åsberg Depression Rating Scale (MADRS) score were observed at 4, 6, and 8 weeks. ELF-ELME appears to ameliorate depressive symptoms in patients with major depressive disorder safely and effectively, suggesting that it could be used as an alternative treatment for depressive patients who do not prefer to take antidepressants and in combination with antidepressant therapy for patients who only partially respond to pharmacotherapy.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Magnetic Field Therapy , Humans , Male , Depressive Disorder, Treatment-Resistant/therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Depressive Disorder, Major/therapy , Depressive Disorder, Major/drug therapy , Adult , Middle Aged , Magnetic Field Therapy/methods , Treatment Outcome , Outcome Assessment, Health Care
6.
JBMR Plus ; 8(4): ziae018, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38544920

ABSTRACT

Achondroplasia (ACH) is a skeletal dysplasia characterized by short-limbed short stature caused by the gain-of-function mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Activated FGFR3, which is a negative regulator of bone elongation, impairs the growth of long bones and the spinal arch by inhibiting chondrocyte proliferation and differentiation. Most patients with ACH have spinal canal stenosis in addition to short stature. Meclozine has been found to inhibit FGFR3 via drug repurposing. A 10-d treatment with meclozine promoted long-bone growth in a mouse model of ACH (Fgfr3ach mice). This study aimed to evaluate the effects of long-term meclozine administration on promoting bone growth and the spinal canal in Fgfr3ach mice. Meclozine (2 mg/kg/d) was orally administered to Fgfr3ach mice for 5 d per wk from the age of 7 d to 56 d. Meclozine (2 mg/kg/d) significantly reduced the rate of death or paralysis and improved the length of the body, cranium, and long bones in male and female Fgfr3ach mice. Micro-computed tomography analysis revealed that meclozine ameliorated kyphotic deformities and trabecular parameters, including BMD, bone volume/tissue volume, trabecular thickness, and trabecular number at distal femur of Fgfr3ach mice in both sexes. Histological analyses revealed that the hypertrophic zone in the growth plate was restored in Fgfr3ach mice following meclozine treatment, suggesting upregulation of endochondral ossification. Skeletal preparations demonstrated that meclozine restored the spinal canal diameter in Fgfr3ach mice in addition to improving the length of each bone. The 2 mg/kg/d dose of meclozine reduced the rate of spinal paralysis caused by spinal canal stenosis, maintained the growth plate structure, and recovered the bone quality and growth of axial and appendicular skeletons of Fgfr3ach mice in both sexes. Long-term meclozine administration has the potential to ameliorate spinal paralysis and bone growth in patients with ACH.

7.
Neurotherapeutics ; 21(2): e00318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233267

ABSTRACT

Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 â€‹kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.


Subject(s)
Myasthenic Syndromes, Congenital , Animals , Mice , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Calcitriol/metabolism , Neuromuscular Junction/metabolism , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Motor Neurons/metabolism
8.
NPJ Parkinsons Dis ; 10(1): 106, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773112

ABSTRACT

We aimed to identify gut microbial features in Parkinson's disease (PD) across countries by meta-analyzing our fecal shotgun sequencing dataset of 94 PD patients and 73 controls in Japan with five previously reported datasets from USA, Germany, China1, China2, and Taiwan. GC-MS and LC-MS/MS assays were established to quantify fecal short-chain fatty acids (SCFAs) and fecal polyamines, respectively. α-Diversity was increased in PD across six datasets. Taxonomic analysis showed that species Akkermansia muciniphila was increased in PD, while species Roseburia intestinalis and Faecalibacterium prausnitzii were decreased in PD. Pathway analysis showed that genes in the biosyntheses of riboflavin and biotin were markedly decreased in PD after adjusting for confounding factors. Five out of six categories in carbohydrate-active enzymes (CAZymes) were decreased in PD. Metabolomic analysis of our fecal samples revealed that fecal SCFAs and polyamines were significantly decreased in PD. Genes in the riboflavin and biotin biosyntheses were positively correlated with the fecal concentrations of SCFAs and polyamines. Bacteria that accounted for the decreased riboflavin biosynthesis in Japan, the USA, and Germany were different from those in China1, China2, and Taiwan. Similarly, different bacteria accounted for decreased biotin biosynthesis in the two country groups. We postulate that decreased SCFAs and polyamines reduce the intestinal mucus layer, which subsequently facilitates the formation of abnormal α-synuclein fibrils in the intestinal neural plexus in PD, and also cause neuroinflammation in PD.

9.
Dis Model Mech ; 17(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38903011

ABSTRACT

Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Muscle, Skeletal , Protein Folding , Unfolded Protein Response , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Apoptosis , Mice , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Organ Specificity , Forkhead Box Protein O1/metabolism , Gene Knock-In Techniques , X-Box Binding Protein 1/metabolism , Protein Aggregates , Proteasome Endopeptidase Complex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL