Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Emerg Infect Dis ; 18(8): 1307-13, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22840345

ABSTRACT

In December 2009, two unusual cases of anthrax were diagnosed in heroin users in Scotland. A subsequent anthrax outbreak in heroin users emerged throughout Scotland and expanded into England and Germany, sparking concern of nefarious introduction of anthrax spores into the heroin supply. To better understand the outbreak origin, we used established genetic signatures that provided insights about strain origin. Next, we sequenced the whole genome of a representative Bacillus anthracis strain from a heroin user (Ba4599), developed Ba4599-specific single-nucleotide polymorphism assays, and genotyped all available material from other heroin users with anthrax. Of 34 case-patients with B. anthracis-positive PCR results, all shared the Ba4599 single-nucleotide polymorphism genotype. Phylogeographic analysis demonstrated that Ba4599 was closely related to strains from Turkey and not to previously identified isolates from Scotland or Afghanistan, the presumed origin of the heroin. Our results suggest accidental contamination along the drug trafficking route through a cutting agent or animal hides used to smuggle heroin into Europe.


Subject(s)
Anthrax/epidemiology , Bacillus anthracis/genetics , Disease Outbreaks , Heroin , Molecular Epidemiology , Substance Abuse, Intravenous , Anthrax/diagnosis , Anthrax/microbiology , Bacillus anthracis/isolation & purification , Bacterial Typing Techniques , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Europe/epidemiology , Female , Genome, Bacterial , Genotype , Humans , Male , Phylogeny , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Substance Abuse, Intravenous/complications , Substance Abuse, Intravenous/epidemiology
2.
BMC Genomics ; 12: 477, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21962024

ABSTRACT

BACKGROUND: An isolate originally labeled Bacillus megaterium CDC 684 was found to contain both pXO1 and pXO2, was non-hemolytic, sensitive to gamma-phage, and produced both the protective antigen and the poly-D-glutamic acid capsule. These phenotypes prompted Ezzell et al., (J. Clin. Microbiol. 28:223) to reclassify this isolate to Bacillus anthracis in 1990. RESULTS: We demonstrate that despite these B. anthracis features, the isolate is severely attenuated in a guinea pig model. This prompted whole genome sequencing and closure. The comparative analysis of CDC 684 to other sequenced B. anthracis isolates and further analysis reveals: a) CDC 684 is a close relative of a virulent strain, Vollum A0488; b) CDC 684 defines a new B. anthracis lineage (at least 51 SNPs) that includes 15 other isolates; c) the genome of CDC 684 contains a large chromosomal inversion that spans 3.3 Mbp; d) this inversion has caused a displacement of the usual spatial orientation of the origin of replication (ori) to the termination of replication (ter) from 180° in wild-type B. anthracis to 120° in CDC 684 and e) this isolate also has altered growth kinetics in liquid media. CONCLUSIONS: We propose two alternative hypotheses explaining the attenuated phenotype of this isolate. Hypothesis 1 suggests that the skewed ori/ter relationship in CDC 684 has altered its DNA replication and/or transcriptome processes resulting in altered growth kinetics and virulence capacity. Hypothesis 2 suggests that one or more of the single nucleotide polymorphisms in CDC 684 has altered the expression of a regulatory element or other genes necessary for virulence.


Subject(s)
Bacillus anthracis/growth & development , Bacillus anthracis/genetics , Chromosome Inversion , Bacillus anthracis/classification , Base Sequence , Genome, Bacterial , Molecular Sequence Data , Phylogeny , Polymorphism, Single Nucleotide
3.
BMC Biol ; 7: 78, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19922616

ABSTRACT

BACKGROUND: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. RESULTS: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. CONCLUSION: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.


Subject(s)
Burkholderia pseudomallei/genetics , Gene Transfer, Horizontal/physiology , Genes, Bacterial , Genetics, Population , Australia , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Humans , Molecular Epidemiology , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sequence Homology
4.
BMC Microbiol ; 9: 71, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19368722

ABSTRACT

BACKGROUND: The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP). These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages) have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP) and multiple locus VNTR analysis (MLVA) typing has been used to examine this archival collection of isolates. RESULTS: The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and A.Br.001/002 sub-groups suggest that these represent older and established clades in China. CONCLUSION: B. anthracis isolates were recovered from three canSNP sub-groups (A.Br.008/009, A.Br.Aust94, and A.Br.Vollum) in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads for not only trade but the movement of diseases such as anthrax along the ancient "silk road". Phylogenetic inference also suggests that the A.Br.Ames sub-lineage, first identified in the original Ames strain isolated from Jim Hogg County, TX, is descended from the A.Br.001/002 sub-group that has a major presence in most of China. These results suggest a genetic discontinuity between the younger Ames sub-lineage in Texas and the large Western North American sub-lineage spread across central Canada and the Dakotas.


Subject(s)
Bacillus anthracis/genetics , Bacillus anthracis/isolation & purification , Genotype , Anthrax/epidemiology , Anthrax/microbiology , Bacillus anthracis/classification , Bacterial Typing Techniques , China/epidemiology , DNA, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Geography , Minisatellite Repeats , Molecular Epidemiology , Phylogeny , Polymorphism, Single Nucleotide
5.
Emerg Infect Dis ; 14(4): 653-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18394287

ABSTRACT

A small number of conserved canonical single nucleotide polymorphisms (canSNP) that define major phylogenetic branches for Bacillus anthracis were used to place a Sverdlovsk patient's B. anthracis genotype into 1 of 12 subgroups. Reconstruction of the pagA gene also showed a unique SNP that defines a new lineage for B. anthracis.


Subject(s)
Anthrax/epidemiology , Bacillus anthracis/classification , Bacillus anthracis/genetics , Polymorphism, Single Nucleotide , Anthrax/microbiology , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , DNA, Bacterial/chemistry , Genotype , Humans , Inhalation Exposure , Phylogeny , Russia/epidemiology
6.
J Clin Microbiol ; 46(1): 296-301, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18032628

ABSTRACT

Members of the genus Brucella are known worldwide as pathogens of wildlife and livestock and are the most common organisms of zoonotic infection in humans. In general, brucellae exhibit a range of host specificity in animals that has led to the identification of at least seven Brucella species. The genomes of the various Brucella species are highly conserved, which makes the differentiation of species highly challenging. However, we found single-nucleotide polymorphisms (SNPs) in housekeeping and other genes that differentiated the seven main Brucella species or clades and thus enabled us to develop real-time PCR assays based around these SNPs. Screening of a diverse panel of 338 diverse isolates with these assays correctly identified each isolate with its previously determined Brucella clade. Six of the seven clade-specific assays detected DNA concentrations of less than 10 fg, indicating a high level of sensitivity. This SNP-based approach places samples into a phylogenetic framework, allowing reliable comparisons to be made among the lineages of clonal bacteria and providing a solid basis for genotyping. These PCR assays provide a rapid and highly sensitive method of differentiating the major Brucella groups that will be valuable for clinical and forensic applications.


Subject(s)
Bacterial Typing Techniques/methods , Brucella/classification , Brucella/genetics , DNA, Bacterial/genetics , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Animals , DNA, Bacterial/chemistry , Genotype , Humans , Molecular Sequence Data , Sensitivity and Specificity , Sequence Analysis, DNA
7.
Appl Environ Microbiol ; 74(3): 875-82, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18083878

ABSTRACT

Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks.


Subject(s)
Bacterial Typing Techniques , Botulinum Toxins, Type A/genetics , Botulism/diagnosis , Clostridium botulinum type A/classification , Clostridium botulinum type A/genetics , Genetic Variation , Minisatellite Repeats/genetics , Botulinum Toxins, Type A/classification , Botulism/microbiology , Humans , Polymorphism, Restriction Fragment Length , Serotyping
8.
FEMS Immunol Med Microbiol ; 52(1): 78-87, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17995960

ABSTRACT

Burkholderia pseudomallei is a biothreat agent and an important natural pathogen, causing melioidosis in humans and animals. A type III secretion system (TTSS-3) has been shown to be critical for virulence. Because TTSS components from other pathogens have been used successfully as diagnostic agents and as experimental vaccines, it was investigated whether this was the case for BipB, BipC and BipD, components of B. pseudomallei's TTSS-3. The sequences of BipB, BipC and BipD were found to be highly conserved among B. pseudomallei and B. mallei isolates. A collection of monoclonal antibodies (mAbs) specific for each Bip protein was obtained. Most recognized both native and denatured Bip protein. Burkholderia pseudomallei or B. mallei did not express detectable BipB or BipD under the growth conditions used. However, anti-BipD mAbs did recognize the TTSS needle structures of a Shigella strain engineered to express BipD. The authors did not find that BipB, BipC or BipD are protective antigens because vaccination of mice with any single protein did not result in protection against experimental melioidosis. Enzyme-linked immunosorbent assay (ELISA) studies showed that human melioidosis patients had antibodies to BipB and BipD. However, these ELISAs had low diagnostic accuracy in endemic regions, possibly due to previous patient exposure to B. pseudomallei.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Burkholderia pseudomallei/immunology , Carrier Proteins/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Monoclonal , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Burkholderia mallei/genetics , Burkholderia pseudomallei/genetics , Carrier Proteins/genetics , Conserved Sequence , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Melioidosis/immunology , Melioidosis/prevention & control , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Shigella/genetics , Survival Analysis , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology
9.
Microbiol Spectr ; 4(1)2016 Feb.
Article in English | MEDLINE | ID: mdl-26999390

ABSTRACT

The three main species of the Bacillus cereus sensu lato, B. cereus, B. thuringiensis, and B. anthracis, were recognized and established by the early 1900 s because they each exhibited distinct phenotypic traits. B. thuringiensis isolates and their parasporal crystal proteins have long been established as a natural pesticide and insect pathogen. B. anthracis, the etiological agent for anthrax, was used by Robert Koch in the 19th century as a model to develop the germ theory of disease, and B. cereus, a common soil organism, is also an occasional opportunistic pathogen of humans. In addition to these three historical species designations, are three less-recognized and -understood species: B. mycoides, B. weihenstephanensis, and B. pseudomycoides. All of these "species" combined comprise the Bacillus cereus sensu lato group. Despite these apparently clear phenotypic definitions, early molecular approaches to separate the first three by various DNA hybridization and 16S/23S ribosomal sequence analyses led to some "confusion" because there were limited differences to differentiate between these species. These and other results have led to frequent suggestions that a taxonomic change was warranted to reclassify this group to a single species. But the pathogenic properties of B. anthracis and the biopesticide applications of B. thuringiensis appear to "have outweighed pure taxonomic considerations" and the separate species categories are still being maintained. B. cereus sensu lato represents a classic example of a now common bacterial species taxonomic quandary.


Subject(s)
Bacillus anthracis/classification , Bacillus cereus/classification , Bacillus thuringiensis/classification , Bacillus anthracis/pathogenicity , Bacillus cereus/pathogenicity , Bacillus thuringiensis/pathogenicity , Humans , Phylogeny
10.
mBio ; 7(5)2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27677796

ABSTRACT

Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both state-sponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world's largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. IMPORTANCE: The 1979 Russian anthrax outbreak resulted from an industrial accident at the Soviet anthrax spore production facility in the city of Sverdlovsk. Deep genomic sequencing of two autopsy specimens generated a draft genome and phylogenetic placement of the Soviet Sverdlovsk anthrax strain. While it is known that Soviet scientists had genetically manipulated Bacillus anthracis with the potential to evade vaccine prophylaxis and antibiotic therapeutics, there was no genomic evidence of this from the Sverdlovsk production strain genome. The whole-genome SNP genotype of the Sverdlovsk strain was used to precisely identify it and its close relatives in the context of an extensive global B. anthracis strain collection. This genomic identity can now be used for forensic tracking of this weapons material on a global scale and for future anthrax investigations.

11.
PLoS One ; 10(10): e0140274, 2015.
Article in English | MEDLINE | ID: mdl-26484663

ABSTRACT

The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.


Subject(s)
Burkholderia pseudomallei/genetics , Gene Order , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Algorithms , Burkholderia pseudomallei/classification , Burkholderia pseudomallei/isolation & purification , Evolution, Molecular , Gene Transfer, Horizontal , Genetic Variation , Models, Genetic , Recombination, Genetic , Species Specificity
12.
BMC Genomics ; 3(1): 34, 2002 Dec 09.
Article in English | MEDLINE | ID: mdl-12473162

ABSTRACT

BACKGROUND: Complete sequencing and annotation of the 96.2 kb Bacillus anthracis plasmid, pXO2, predicted 85 open reading frames (ORFs). Bacillus cereus and Bacillus thuringiensis isolates that ranged in genomic similarity to B. anthracis, as determined by amplified fragment length polymorphism (AFLP) analysis, were examined by PCR for the presence of sequences similar to 47 pXO2 ORFs. RESULTS: The two most distantly related isolates examined, B. thuringiensis 33679 and B. thuringiensis AWO6, produced the greatest number of ORF sequences similar to pXO2; 10 detected in 33679 and 16 in AWO6. No more than two of the pXO2 ORFs were detected in any one of the remaining isolates. Dot-blot DNA hybridizations between pXO2 ORF fragments and total genomic DNA from AWO6 were consistent with the PCR assay results for this isolate and also revealed nine additional ORFs shared between these two bacteria. Sequences similar to the B. anthracis cap genes or their regulator, acpA, were not detected among any of the examined isolates. CONCLUSIONS: The presence of pXO2 sequences in the other Bacillus isolates did not correlate with genomic relatedness established by AFLP analysis. The presence of pXO2 ORF sequences in other Bacillus species suggests the possibility that certain pXO2 plasmid gene functions may also be present in other closely related bacteria.

13.
Biosens Bioelectron ; 20(4): 706-18, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15522585

ABSTRACT

Rapid, accurate, and sensitive detection of biothreat agents requires a broad-spectrum assay capable of discriminating between closely related microbial or viral pathogens. Moreover, in cases where a biological agent release has been identified, forensic analysis demands detailed genetic signature data for accurate strain identification and attribution. To date, nucleic acid sequences have provided the most robust and phylogentically illuminating signature information. Nucleic acid signature sequences are not often linked to genomic or extrachromosomal determinants of virulence, a link that would further facilitate discrimination between pathogens and closely related species. Inextricably coupling genetic determinants of virulence with highly informative nucleic acid signatures would provide a robust means of identifying human, livestock, and agricultural pathogens. By means of example, we present here an overview of two general applications of microarray-based methods for: (1) the identification of candidate virulence factors; and (2) the analysis of genetic polymorphisms that are coupled to Bacillus anthracis virulence factors using an accurate, low cost solid-phase mini-sequencing assay. We show that microarray-based analysis of gene expression can identify potential virulence associated genes for use as candidate signature targets, and, further, that microarray-based single nucleotide polymorphism assays provide a robust platform for the detection and identification of signature sequences in a manner independent of the genetic background in which the signature is embedded. We discuss the strategy as a general approach or pipeline for the discovery of virulence-linked nucleic acid signatures for biothreat agents.


Subject(s)
Bacillus anthracis/isolation & purification , Bacillus anthracis/pathogenicity , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , Virulence Factors/analysis , Virulence Factors/genetics , Bacillus anthracis/classification , Bacillus anthracis/genetics , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Oligonucleotide Array Sequence Analysis/instrumentation , Polymorphism, Single Nucleotide/genetics
14.
Genome Announc ; 2(5)2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25237016

ABSTRACT

The Bacillus anthracis strain STI is a Soviet vaccine strain that lacks the pXO2 plasmid. Previous data indicate that this isolate forms a new branch within the B. anthracis sub-group originally identified as A. Br.008/009.

15.
PLoS One ; 9(7): e102651, 2014.
Article in English | MEDLINE | ID: mdl-25047912

ABSTRACT

Sequence analyses and subtyping of Bacillus anthracis strains from Georgia reveal a single distinct lineage (Aust94) that is ecologically established. Phylogeographic analysis and comparisons to a global collection reveals a clade that is mostly restricted to Georgia. Within this clade, many groups are found around the country, however at least one subclade is only found in the eastern part. This pattern suggests that dispersal into and out of Georgia has been rare and despite historical dispersion within the country, for at least for one lineage, current spread is limited.


Subject(s)
Anthrax/microbiology , Bacillus anthracis/genetics , Georgia , Humans , Phylogeny , Phylogeography , Polymorphism, Single Nucleotide
19.
Infect Genet Evol ; 9(5): 1010-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19477301

ABSTRACT

Phylogenetic hypotheses using whole genome sequences have the potential for unprecedented accuracy, yet a failure to understand issues associated with discovery bias, character sampling, and strain sampling can lead to highly erroneous conclusions. For microbial pathogens, phylogenies derived from whole genome sequences are becoming more common, as large numbers of characters distributed across entire genomes can yield extremely accurate phylogenies, particularly for strictly clonal populations. The availability of whole genomes is increasing as new sequencing technologies reduce the cost and time required for genome sequencing. Until entire sample collections can be fully sequenced, harnessing the phylogenetic power from whole genome sequences in more than a small subset of fully sequenced strains requires the integration of whole genome and partial genome genotyping data. Such integration involves discovering evolutionarily stable polymorphic characters by whole genome comparisons, then determining allelic states across a wide panel of isolates using high-throughput genotyping technologies. Here, we demonstrate how such an approach using single nucleotide polymorphisms (SNPs) yields highly accurate, but biased phylogenetic reconstructions and how the accuracy of the resulting tree is compromised by incomplete taxon and character sampling. Despite recent phylogenetic work detailing the strengths and biases of integrating whole genome and partial genome genotype data, these issues are relatively new and remain poorly understood by many researchers. Here, we revisit these biases and provide strategies for maximizing phylogenetic accuracy. Although we write this review with bacterial pathogens in mind, these concepts apply to any clonally reproducing population or indeed to any evolutionarily stable marker that is inherited in a strictly clonal manner. Understanding the ways in which current and emerging technologies can be used to maximize phylogenetic knowledge is advantageous only with a complete understanding of the strengths and weaknesses of these methods.


Subject(s)
DNA Fingerprinting/methods , Evolution, Molecular , Genome, Bacterial , Genomics/methods , Phylogeny , Bacillus anthracis/genetics , Databases, Genetic , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
20.
Mol Aspects Med ; 30(6): 397-405, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19729033

ABSTRACT

The Bacillus anthracis genome reflects its close genetic ties to Bacillus cereus and Bacillus thuringiensis but has been shaped by its own unique biology and evolutionary forces. The genome is comprised of a chromosome and two large virulence plasmids, pXO1 and pXO2. The chromosome is mostly co-linear among B. anthracis strains and even with the closest near neighbor strains. An exception to this pattern has been observed in a large inversion in an attenuated strain suggesting that chromosome co-linearity is important to the natural biology of this pathogen. In general, there are few polymorphic nucleotides among B. anthracis strains reflecting the short evolutionary time since its derivation from a B. cereus-like ancestor. The exceptions to this lack of diversity are the variable number tandem repeat (VNTR) loci that exist in genic and non genic regions of the chromosome and both plasmids. Their variation is associated with high mutability that is driven by rapid insertion and deletion of the repeats within an array. A notable example is found in the vrrC locus which is homologous to known DNA translocase genes from other bacteria.


Subject(s)
Bacillus anthracis/genetics , Chromosomes, Bacterial , Genetic Variation , Genome, Bacterial , Anthrax/microbiology , Bacillus anthracis/classification , Bacillus anthracis/pathogenicity , DNA, Bacterial/genetics , Evolution, Molecular , Genes, Bacterial , Minisatellite Repeats , Phylogeny , Plasmids/genetics , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL