Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Cell ; 168(3): 473-486.e15, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28129541

ABSTRACT

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.


Subject(s)
Chimerism , Gene Editing , Mammals/embryology , Animals , Blastocyst , CRISPR-Cas Systems , Cattle , Embryo, Mammalian/cytology , Female , Humans , Male , Mammals/classification , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Pluripotent Stem Cells , Rats , Rats, Sprague-Dawley , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL