Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 54(5): 2171-5, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25675091

ABSTRACT

The current approaches to electrochemically synthesizing valve metal-derived nanochannel films with longitudinal nanospaces aligned at a right angle to planar substrates rely on highly toxic fluoride compounds and require severe reaction conditions. Herein, we report on a fluoride-free, room-temperature electrochemical synthesis of a genuine mesoporous niobia thin film from the parent metal. The electrochemical reaction is driven by only a 1 V bias with respect to a Pt counter electrode in an aqueous solution. The solution contained an inexpensive, less toxic potassium hydroxide, and the reaction produced favorable byproducts, namely, recyclable K8Nb6O19 and H2.

2.
Sci Rep ; 7(1): 4913, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28687806

ABSTRACT

Semiconductor nanowires with both nano- and micrometre dimensions have been used as effective materials for artificial photosynthesis; however, a single synthesis approach to provide rational control over the macroscopic morphology, which can allow for the high-throughput screening of photocatalytic performance, and carrier transfer between oxide and sulphide nanostructures has been poorly known. Our recent findings indicate that a single parameter, Nb foil thickness, in a vapor-phase synthesis method can alter the macroscopic morphology of resulting Nb2O5 nanowires. Thick Nb foil results in a free-standing Nb2O5 film, whereas a thinner foil leads to fragmentation to give a powder. During the synthesis process, a Rh dopant was provided through metal-organic chemical vapor deposition to reduce the Nb2O5 energy gap. Upon irradiation with visible light (λ > 440 nm), the free-standing nanowire film [Nb2O5:Rh-NW(F)] showed photoanodic current with a Faradaic efficiency of 99% for O2 evolution. Under identical irradiation conditions, the powdered counterpart [Nb2O5:Rh-NW(P)] showed activity for O2 evolution in the presence of an electron acceptor. The poor water-reduction ability was greatly enhanced by the Au-catalysed vapor-liquid-solid (VLS) growth of H2-evolving CdS onto the reduction sites of Nb2O5:Rh-NW(P) [Au/CdS/Nb2O5:Rh-NW(P)].

SELECTION OF CITATIONS
SEARCH DETAIL