Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240051

ABSTRACT

Botrytis cinerea is a necrotrophic fungus characterized mainly by its wide host range of infected plants. The deletion of the white-collar-1 gene (bcwcl1), which encodes for a blue-light receptor/transcription factor, causes a decrease in virulence, particularly when assays are conducted in the presence of light or photocycles. However, despite ample characterization, the extent of the light-modulated transcriptional responses regulated by BcWCL1 remains unknown. In this study, pathogen and pathogen:host RNA-seq analyses, conducted during non-infective in vitro plate growth and when infecting Arabidopsis thaliana leaves, respectively, informed on the global gene expression patterns after a 60 min light pulse on the wild-type B05.10 or ∆bcwcl1 B. cinerea strains. The results revealed a complex fungal photobiology, where the mutant did not react to the light pulse during its interaction with the plant. Indeed, when infecting Arabidopsis, no photoreceptor-encoding genes were upregulated upon the light pulse in the ∆bcwcl1 mutant. Differentially expressed genes (DEGs) in B. cinerea under non-infecting conditions were predominantly related to decreased energy production in response to the light pulse. In contrast, DEGs during infection significantly differ in the B05.10 strain and the ∆bcwcl1 mutant. Upon illumination at 24 h post-infection in planta, a decrease in the B. cinerea virulence-associated transcripts was observed. Accordingly, after a light pulse, biological functions associated with plant defense appear enriched among light-repressed genes in fungus-infected plants. Taken together, our results show the main transcriptomic differences between wild-type B. cinerea B05.10 and ∆bcwcl1 after a 60 min light pulse when growing saprophytically on a Petri dish and necrotrophically over A. thaliana.


Subject(s)
Arabidopsis , Photobiology , Arabidopsis/genetics , Arabidopsis/microbiology , Botrytis , Gene Expression , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Plant
2.
Nature ; 532(7599): 375-9, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27074515

ABSTRACT

Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Energy Metabolism , Magnesium/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Line , Chlorophyta/cytology , Chlorophyta/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Feedback, Physiological , Gene Expression Regulation , Humans , Intracellular Space/metabolism , Male , Mice , TOR Serine-Threonine Kinases/metabolism , Time Factors
3.
Microbiol Spectr ; 11(4): e0372722, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37272789

ABSTRACT

In Neurospora crassa, caffeine and other methylxanthines are known to inhibit phosphodiesterase (PDE) activity, leading to augmented cAMP levels. In this organism, it has also been shown that the addition of these drugs significantly lengthens the circadian period, as seen by conidiation rhythms. Utilizing in vivo bioluminescence reporters, pharmacological inhibitors, and cAMP analogs, we revisited the effect of methylxanthines and the role of cAMP signaling in the Neurospora clockworks. We observed that caffeine, like all tested methylxanthines, led to significant period lengthening, visualized with both core-clock transcriptional and translational reporters. Remarkably, this phenotype is still observed when phosphodiesterase (PDE) activity is genetically or chemically (via 3-isobutyl-1-methylxanthine) abrogated. Likewise, methylxanthines still exert a period effect in several cAMP signaling pathway mutants, including adenylate cyclase (cr-1) and protein kinase A (PKA) (Δpkac-1) mutants, suggesting that these drugs lead to circadian phenotypes through mechanisms different from the canonical PDE-cAMP-PKA signaling axis. Thus, this study highlights the strong impact of methylxanthines on circadian period in Neurospora, albeit the exact mechanisms somehow remain elusive. IMPORTANCE Evidence from diverse organisms show that caffeine causes changes in the circadian clock, causing period lengthening. The fungus Neurospora crassa is no exception; here, several methylxanthines such as caffeine, theophylline, and aminophylline cause period lengthening in a concentration-dependent manner. Although methylxanthines are expected to inhibit phosphodiesterase activity, we were able to show by genetic and pharmacological means that these drugs exert their effects through a different mechanism. Moreover, our results indicate that increases in cAMP levels and changes in PKA activity do not impact the circadian period and therefore are not part of underlying effects of methylxanthine. These results set the stage for future analyses dissecting the molecular mechanisms by which these drugs dramatically modify the circadian period.


Subject(s)
Caffeine , Neurospora crassa , Neurospora crassa/drug effects , Neurospora crassa/physiology , Circadian Rhythm/drug effects , Cyclic AMP/metabolism , Caffeine/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , 1-Methyl-3-isobutylxanthine , Protein Kinases/metabolism , Signal Transduction
4.
Elife ; 112022 08 11.
Article in English | MEDLINE | ID: mdl-35950750

ABSTRACT

Circadian clocks are important for an individual's fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal-fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. Thus, we confirmed the existence of circadian rhythms in T. atroviride, which are temperature-compensated and modulated by environmental cues such as light and temperature. Nevertheless, the presence of such molecular rhythms appears to be highly dependent on the nutritional composition of the media. Complementation of a clock null (Δfrq) Neurospora crassa strain with the T. atroviride-negative clock component (tafrq) restored core clock function, with the same period observed in the latter fungus, confirming the role of tafrq as a bona fide core clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride's mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride's overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core clock-negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components largely modulate development and secondary metabolism in this fungus, including the rhythmic production of distinct volatile organic compounds (VOCs). Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.


Subject(s)
Botrytis , CLOCK Proteins , Circadian Rhythm , Fungal Proteins , Hypocreales , Microbial Interactions , Secondary Metabolism , Botrytis/growth & development , Botrytis/metabolism , Botrytis/radiation effects , CLOCK Proteins/metabolism , Circadian Rhythm/radiation effects , Fungal Proteins/metabolism , Hypocreales/growth & development , Hypocreales/metabolism , Hypocreales/radiation effects , Light , Temperature
5.
Comput Struct Biotechnol J ; 19: 6212-6228, 2021.
Article in English | MEDLINE | ID: mdl-34900134

ABSTRACT

Botrytis cinerea and Trichoderma atroviride are two relevant fungi in agricultural systems. To gain insights into these organisms' transcriptional gene regulatory networks (GRNs), we generated a manually curated transcription factor (TF) dataset for each of them, followed by a GRN inference utilizing available sequence motifs describing DNA-binding specificity and global gene expression data. As a proof of concept of the usefulness of this resource to pinpoint key transcriptional regulators, we employed publicly available transcriptomics data and a newly generated dual RNA-seq dataset to build context-specific Botrytis and Trichoderma GRNs under two different biological paradigms: exposure to continuous light and Botrytis-Trichoderma confrontation assays. Network analysis of fungal responses to constant light revealed striking differences in the transcriptional landscape of both fungi. On the other hand, we found that the confrontation of both microorganisms elicited a distinct set of differentially expressed genes with changes in T. atroviride exceeding those in B. cinerea. Using our regulatory network data, we were able to determine, in both fungi, central TFs involved in this interaction response, including TFs controlling a large set of extracellular peptidases in the biocontrol agent T. atroviride. In summary, our work provides a comprehensive catalog of transcription factors and regulatory interactions for both organisms. This catalog can now serve as a basis for generating novel hypotheses on transcriptional regulatory circuits in different experimental contexts.

6.
mBio ; 11(4)2020 08 04.
Article in English | MEDLINE | ID: mdl-32753496

ABSTRACT

The plant pathogen Botrytis cinerea is responsible for gray-mold disease, which infects a wide variety of species. The outcome of this host-pathogen interaction, a result of the interplay between plant defense and fungal virulence pathways, can be modulated by various environmental factors. Among these, iron availability and acquisition play a crucial role in diverse biological functions. How B. cinerea obtains iron, an essential micronutrient, during infection is unknown. We set out to determine the role of the reductive iron assimilation (RIA) system during B. cinerea infection. This system comprises the BcFET1 ferroxidase, which belongs to the multicopper oxidase (MCO) family of proteins, and the BcFTR1 membrane-bound iron permease. Gene knockout and complementation studies revealed that, compared to the wild type, the bcfet1 mutant displays delayed conidiation, iron-dependent sclerotium production, and significantly reduced whole-cell iron content. Remarkably, this mutant exhibited a hypervirulence phenotype, whereas the bcftr1 mutant presents normal virulence and unaffected whole-cell iron levels and developmental programs. Interestingly, while in iron-starved plants wild-type B. cinerea produced slightly reduced necrotic lesions, the hypervirulence phenotype of the bcfet1 mutant is no longer observed in iron-deprived plants. This suggests that B. cinerea bcfet1 knockout mutants require plant-derived iron to achieve larger necrotic lesions, whereas in planta analyses of reactive oxygen species (ROS) revealed increased ROS levels only for infections caused by the bcfet1 mutant. These results suggest that increased ROS production, under an iron sufficiency environment, at least partly underlie the observed infection phenotype in this mutant.IMPORTANCE The plant-pathogenic fungus B. cinerea causes enormous economic losses, estimated at anywhere between $10 billion and $100 billion worldwide, under both pre- and postharvest conditions. Here, we present the characterization of a loss-of-function mutant in a component involved in iron acquisition that displays hypervirulence. While in different microbial systems iron uptake mechanisms appear to be critical to achieve full pathogenic potential, we found that the absence of the ferroxidase that is part of the reductive iron assimilation system leads to hypervirulence in this fungus. This is an unusual and rather underrepresented phenotype, which can be modulated by iron levels in the plant and provides an unexpected link between iron acquisition, reactive oxygen species (ROS) production, and pathogenesis in the Botrytis-plant interaction.


Subject(s)
Botrytis/genetics , Botrytis/pathogenicity , Ceruloplasmin/metabolism , Fungal Proteins/metabolism , Host-Pathogen Interactions , Iron/metabolism , Botrytis/enzymology , Ceruloplasmin/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Plant Leaves/microbiology , Spores, Fungal , Virulence/genetics
7.
Sci Rep ; 7(1): 13837, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062053

ABSTRACT

Circadian systems enable organisms to synchronize their physiology to daily and seasonal environmental changes relying on endogenous pacemakers that oscillate with a period close to 24 h even in the absence of external timing cues. The oscillations are achieved by intracellular transcriptional/translational feedback loops thoroughly characterized for many organisms, but still little is known about the presence and characteristics of circadian clocks in fungi other than Neurospora crassa. We sought to characterize the circadian system of a natural isolate of Aureobasidium pullulans, a cold-adapted yeast bearing great biotechnological potential. A. pullulans formed daily concentric rings that were synchronized by light/dark cycles and were also formed in constant darkness with a period of 24.5 h. Moreover, these rhythms were temperature compensated, as evidenced by experiments conducted at temperatures as low as 10 °C. Finally, the expression of clock-essential genes, frequency, white collar-1, white collar-2 and vivid was confirmed. In summary, our results indicate the existence of a functional circadian clock in A. pullulans, capable of sustaining rhythms at very low temperatures and, based on the presence of conserved clock-gene homologues, suggest a molecular and functional relationship to well-described circadian systems.


Subject(s)
Ascomycota/physiology , Circadian Rhythm , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Photoperiod , Computational Biology , Fungal Proteins/genetics , Gene Expression Profiling , Temperature
8.
Genetics ; 204(1): 163-76, 2016 09.
Article in English | MEDLINE | ID: mdl-27449058

ABSTRACT

Neurospora crassa is a model organism for the study of circadian clocks, molecular machineries that confer ∼24-hr rhythms to different processes at the cellular and organismal levels. The FREQUENCY (FRQ) protein is a central component of the Neurospora core clock, a transcription/translation negative feedback loop that controls genome-wide rhythmic gene expression. A genetic screen aimed at determining new components involved in the latter process identified regulation of conidiation 1 (rco-1), the ortholog of the Saccharomyces cerevisiae Tup1 corepressor, as affecting period length. By employing bioluminescent transcriptional and translational fusion reporters, we evaluated frq and FRQ expression levels in the rco-1 mutant background observing that, in contrast to prior reports, frq and FRQ expression are robustly rhythmic in the absence of RCO-1, although both amplitude and period length of the core clock are affected. Moreover, we detected a defect in metabolic compensation, such that high-glucose concentrations in the medium result in a significant decrease in period when RCO-1 is absent. Proteins physically interacting with RCO-1 were identified through co-immunoprecipitation and mass spectrometry; these include several components involved in chromatin remodeling and transcription, some of which, when absent, lead to a slight change in period. In the aggregate, these results indicate a dual role for RCO-1: although it is not essential for core-clock function, it regulates proper period and amplitude of core-clock dynamics and is also required for the rhythmic regulation of several clock-controlled genes.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Neurospora crassa/genetics , Neurospora crassa/metabolism , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Circadian Clocks/physiology , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Phosphorylation , Repressor Proteins/metabolism
9.
Science ; 347(6221): 1257277, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25635104

ABSTRACT

The mechanistic basis of eukaryotic circadian oscillators in model systems as diverse as Neurospora, Drosophila, and mammalian cells is thought to be a transcription-and-translation-based negative feedback loop, wherein progressive and controlled phosphorylation of one or more negative elements ultimately elicits their own proteasome-mediated degradation, thereby releasing negative feedback and determining circadian period length. The Neurospora crassa circadian negative element FREQUENCY (FRQ) exemplifies such proteins; it is progressively phosphorylated at more than 100 sites, and strains bearing alleles of frq with anomalous phosphorylation display abnormal stability of FRQ that is well correlated with altered periods or apparent arrhythmicity. Unexpectedly, we unveiled normal circadian oscillations that reflect the allelic state of frq but that persist in the absence of typical degradation of FRQ. This manifest uncoupling of negative element turnover from circadian period length determination is not consistent with the consensus eukaryotic circadian model.


Subject(s)
Circadian Clocks , Circadian Rhythm , Fungal Proteins/genetics , Fungal Proteins/metabolism , Neurospora crassa/physiology , Adenine/analogs & derivatives , Adenine/pharmacology , Alleles , Feedback, Physiological , Fungal Proteins/biosynthesis , Half-Life , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Stability , Proteolysis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL