Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Anal Bioanal Chem ; 416(13): 3239-3250, 2024 May.
Article in English | MEDLINE | ID: mdl-38573343

ABSTRACT

Cocaine and antidepressants rank high globally in substance consumption, emphasizing their impact on public health. The determination of these compounds and related substances in biological samples is crucial for forensic toxicology. This study focused on developing an innovative analytical method for the determination of cocaine, antidepressants, and their related metabolites in postmortem blood samples, using unmodified commercial Fe3O4 nanoparticles as a sorbent for dispersive magnetic solid-phase extraction (m-d-SPE), coupled with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis. An aliquot of 100 µL of whole blood and 5 µL of the internal standard pool were added to 30 mg of nanoparticles. The nanoparticles were separated from the sample using a neodymium magnet inserted into a 3D-printed microtube rack. The liquid was then discarded, followed by desorption with 300 µL of 1/1/1 acetonitrile/methanol/ethyl acetate. The sample was vortexed and separated, and 1.5 µL of the organic supernatant was injected into the LC-MS/MS. The method was acceptably validated and successfully applied to 263 postmortem blood samples. All samples evaluated in this study were positive for at least one substance. The most frequent analyte was benzoylecgonine, followed by cocaine and cocaethylene. The most common antidepressants encountered in the analyzed samples were citalopram and fluoxetine, followed by fluoxetine's metabolite norfluoxetine. This study describes the first report of this sorbent in postmortem blood analysis, demonstrating satisfactory results for linearity, precision, accuracy, and selectivity for all compounds. The method's applicability was confirmed, establishing it as an efficient and sustainable alternative to traditional techniques for forensic casework.


Subject(s)
Antidepressive Agents , Cocaine , Forensic Toxicology , Magnetite Nanoparticles , Solid Phase Extraction , Tandem Mass Spectrometry , Humans , Cocaine/blood , Cocaine/analogs & derivatives , Antidepressive Agents/blood , Tandem Mass Spectrometry/methods , Forensic Toxicology/methods , Solid Phase Extraction/methods , Magnetite Nanoparticles/chemistry , Chromatography, Liquid/methods , Limit of Detection , Substance Abuse Detection/methods , Male , Female , Adult
2.
Immun Ageing ; 21(1): 17, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454515

ABSTRACT

BACKGROUND: Several risk factors have been involved in the poor clinical progression of coronavirus disease-19 (COVID-19), including ageing, and obesity. SARS-CoV-2 may compromise lung function through cell damage and paracrine inflammation; and obesity has been associated with premature immunosenescence, microbial translocation, and dysfunctional innate immune responses leading to poor immune response against a range of viruses and bacterial infections. Here, we have comprehensively characterized the immunosenescence, microbial translocation, and immune dysregulation established in hospitalized COVID-19 patients with different degrees of body weight. RESULTS: Hospitalised COVID-19 patients with overweight and obesity had similarly higher plasma LPS and sCD14 levels than controls (all p < 0.01). Patients with obesity had higher leptin levels than controls. Obesity and overweight patients had similarly higher expansions of classical monocytes and immature natural killer (NK) cells (CD56+CD16-) than controls. In contrast, reduced proportions of intermediate monocytes, mature NK cells (CD56+CD16+), and NKT were found in both groups of patients than controls. As expected, COVID-19 patients had a robust expansion of plasmablasts, contrasting to lower proportions of major T-cell subsets (CD4 + and CD8+) than controls. Concerning T-cell activation, overweight and obese patients had lower proportions of CD4+CD38+ cells than controls. Contrasting changes were reported in CD25+CD127low/neg regulatory T cells, with increased and decreased proportions found in CD4+ and CD8+ T cells, respectively. There were similar proportions of T cells expressing checkpoint inhibitors across all groups. We also investigated distinct stages of T-cell differentiation (early, intermediate, and late-differentiated - TEMRA). The intermediate-differentiated CD4 + T cells and TEMRA cells (CD4+ and CD8+) were expanded in patients compared to controls. Senescent T cells can also express NK receptors (NKG2A/D), and patients had a robust expansion of CD8+CD57+NKG2A+ cells than controls. Unbiased immune profiling further confirmed the expansions of senescent T cells in COVID-19. CONCLUSIONS: These findings suggest that dysregulated immune cells, microbial translocation, and T-cell senescence may partially explain the increased vulnerability to COVID-19 in subjects with excess of body weight.

3.
Biomed Chromatogr ; 38(8): e5904, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38811368

ABSTRACT

Omarigliptin (OMG) is an antidiabetic drug indicated for the treatment of type 2 diabetes mellitus. Forced degradation studies are practical experiments to evaluate the stability of drugs and to establish degradation profiles. Herein, we present the investigation of the degradation products (DPs) of OMG formed under various stress conditions. OMG was subjected to hydrolytic (alkaline and acidic), oxidative, thermal, and photolytic forced degradation. A stability-indicating ultra-fast liquid chromatography method was applied to separate and quantify OMG and its DPs. Five DPs were adequately separated and detected in less than 6 min, while other published methods detected four DPs. MS was applied to identify and obtain information on the structural elucidation of the DPs. Three m/z DPs confirmed previously published research, and two novel DPs were described in this paper. The toxicity of OMG and its DPs were investigated for the first time using in vitro cytotoxicity assays, and the sample under oxidative conditions presented significant cytotoxicity. Based on the results from forced degradation studies, OMG was found to be labile to hydrolysis, oxidation, photolytic, and thermal stress conditions. The results of this study contribute to the quality control and stability profile of OMG.


Subject(s)
Drug Stability , Heterocyclic Compounds, 2-Ring , Pyrans , Chromatography, High Pressure Liquid/methods , Pyrans/chemistry , Pyrans/analysis , Pyrans/toxicity , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/analysis , Heterocyclic Compounds, 2-Ring/toxicity , Mass Spectrometry/methods , Humans , Cell Survival/drug effects , Reproducibility of Results , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/analysis , Oxidation-Reduction , Linear Models
4.
Toxicol Mech Methods ; 34(2): 189-202, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37830174

ABSTRACT

Microextractions have been developed for the tricyclic antidepressants (TCAs) analysis in biological matrices, including dispersive liquid-liquid microextraction (DLLME). The proposed DLLME employed 490 µL of biological sample (whole blood or plasma), which were added 15 mg of NaCl, 10 µL of medazepam as internal standard (10 µg/mL) and 100 µL of 2 M NaOH. This mixture was homogenized by vortex (2800 rpm/10 s) and 400 µL of hexane (extractor solvent) with 600 µL of methanol (dispersing solvent) were added to the sample. After the vortex step (2800 rpm/5 s), an ultrasonic bath for 300 s was employed. Then, this content was centrifuged (10 min/10000 rpm), organic phase was collected and dried under air flow. After, 30 µL of the mobile phase was used for resuspension and 20 µL is injected into LC-DAD. This method was optimized and fully validated according to UNODC and SWGTOX guidelines, reaching limits of detection equivalent to analytical methodologies that employ mass spectrometry (MS). Also, it was applied in real cases involving suspected exposure to TCAs. So, the developed DLLME for the determination of TCAs in whole blood and plasma samples proved to be a simple, reliable, robust and reproducible method that can be used in toxicology and clinical laboratories.


Subject(s)
Antidepressive Agents, Tricyclic , Liquid Phase Microextraction , Liquid Phase Microextraction/methods , Chromatography, Liquid , Solvents , Mass Spectrometry , Limit of Detection
5.
Biomed Chromatogr ; 37(4): e5586, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36683129

ABSTRACT

Vancomycin is used as an antimicrobial agent for the treatment of severe gram-positive infections. The importance of therapeutic monitoring of antimicrobials has led to the development of more specific sample preparation techniques capable of identifying with accuracy the concentration of this substance in the organism. An aliquot of 10 µl of plasma was transferred to Whatman 903 paper and dried at room temperature. The extraction method was performed by cutting and transferring the paper to a microtube and adding sodium phosphate buffer and internal standard. The mixture was shaken and centrifuged, and a 5-µl aliquot was injected into the analytical system. The optimization of the main parameters that can influence the extraction efficiency was performed using multivariate approaches to obtain the best conditions. The method developed was validated, providing coefficients of determination higher than 0.994 and a lower limit of quantification of 1 mg/L. Within- and between-run precision ranged from 11.4 to 17.30% and from 6.65 to 13.51%, respectively. This method was successfully applied to 75 samples of patients undergoing vancomycin therapy. The method was rapid, simple, and environmentally friendly with satisfactory analytical performance and was advantageous over the laborious and time-consuming methodologies used in therapeutic drug monitoring routine analyses.


Subject(s)
Tandem Mass Spectrometry , Vancomycin , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Plasma , Drug Monitoring/methods , Dried Blood Spot Testing/methods , Immunoassay/methods , Reproducibility of Results
6.
Biomed Chromatogr ; 36(12): e5487, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36001303

ABSTRACT

The combination of different advanced analytical techniques makes it possible to determine the concentrations of neurotransmitters in various biological matrices, providing a complex and comprehensive study of the effects of psychoactive substances. The present study aimed to develop and validate a fast and simple analytical method for the determination of acetylcholine, serotonin, γ-aminobutyric acid, glutamate, dopamine and metabolites in rats brain tissue by liquid chromatography coupled to tandem mass spectrometry. The brain was homogenized and aliquots of the sample, dopamine-d4 , and acetone were added to a tube and then vortexed and centrifuged. The supernatant was collected and dried. The residue was reconstituted and injected. The LLOQ ranged from 0.001 to 1 µg/g; the intra-run precision ranged from 0.47 to 11.52%; the inter-run precision ranged from 0.68 to 17.54%; and the bias ranged from 89.10 to 109.60%. As proof of concept, the method was applied to animals exposed to the synthetic cathinone 4'-fuoro-α-pyrrolidinohexanophenone (300 mg/kg). In addition, the workflow proved to be simple, rapid and useful to estimate the concentration of neurotransmitters. This analytical tool can be used to support the investigation of the changes in the neurochemical profile for the characterization of the mechanism of action of psychoactive substances, as well as both neurological and psychiatric diseases.


Subject(s)
Dopamine , Tandem Mass Spectrometry , Animals , Rats , Tandem Mass Spectrometry/methods , Dopamine/analysis , Chromatography, Liquid/methods , Neurotransmitter Agents/analysis , Brain/metabolism , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
7.
Int J Sports Med ; 43(2): 183-191, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34341973

ABSTRACT

Anabolic androgenic steroid (AAS) abuse leads to myocardial toxicity. Human studies are conflicting about the myocardial fibrosis in AAS users. We evaluated cardiac tissue characterization, left ventricle (LV) function, and cardiac structure by cardiovascular magnetic resonance (CMR). Twenty strength-trained AAS users (AASU) aged 29±5 yr, 20 strength-trained AAS nonusers (AASNU), and 7 sedentary controls (SC) were enrolled. Native T1 mapping, late-gadolinium enhancement (LGE), extracellular volume (ECV), and myocardial strain were evaluated. AASU showed lower Native T1 values than AASNU (888±162 vs. 1020±179 ms p=0.047). Focal myocardial fibrosis was found in 2 AASU. AASU showed lower LV radial strain (30±8 vs. 38±6%, p<0.01), LV circumferential strain (-17±3 vs. -20±2%, p<0.01), and LV global longitudinal strain (-17±3 vs. -20±3%, p<0.01) than AASNU by CMR. By echocardiography, AASU demonstrated lower 4-chamber longitudinal strain than AASNU (-15±g3 vs. -18±2%, p=0.03). ECV was similar among AASU, AASNU, and SC (28±10 vs. 28±7 vs. 30±7%, p=0.93). AASU had higher LV mass index than AASNU and SC (85±14 vs. 64±8 vs. 58±5 g/m2, respectively, p<0.01). AAS abuse may be linked to decreased myocardial native T1 values, impaired myocardial contractility, and focal fibrosis. These alterations may be associated with maladaptive cardiac hypertrophy in young AAS users.


Subject(s)
Contrast Media , Gadolinium , Case-Control Studies , Fibrosis , Humans , Myocardium , Predictive Value of Tests , Testosterone Congeners/adverse effects , Ventricular Function, Left
8.
Scand J Med Sci Sports ; 29(3): 422-429, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30387184

ABSTRACT

Disturbed shear rate (SR), characterized by increased retrograde and oscillatory SR in the brachial artery, is associated with inflammation, atherosclerosis, endothelial dysfunction, and sympathetic hyperactivity. Young subjects do not have disturbed SR; however, elderly subjects do, which seems to be associated with sympathetic hyperactivity. Anabolic androgenic steroids (AAS) abuse in young is associated with increased muscle sympathetic nerve activity (MSNA). We hypothesized that AAS users might have disturbed SR. We tested the association between retrograde and oscillatory SR with MSNA. In addition, we measured the high-sensitivity C-reactive protein (hs-CRP). We evaluated 10 male AAS users, age 27 ± 4 years, and 10 age-matched AAS nonusers, age 29 ± 5 years. At rest, retrograde and oscillatory SR were evaluated by Doppler ultrasound, MSNA was measured with microneurography, and hs-CRP was measured in blood sample. Flow-mediated dilation (FMD) was also assessed. AAS users had higher retrograde SR (24.42 ± 17.25 vs 9.15 ± 6.62 s- 1 , P = 0.01), oscillatory SR (0.22 ± 0.13 vs 0.09 ± 0.07 au P = 0.01), and MSNA (42 ± 9 vs 32 ± 4 bursts/100 heart beats, P = 0.018) than nonusers. MSNA (bursts/100 heart beats) was correlated with retrograde SR (r = 0.50, P = 0.050) and oscillatory SR (r = 0.51, P = 0.042). AAS users had higher hs-CRP [1.17 (0.44-3.63) vs 0.29 (0.17-0.70) mg/L, P = 0.015] and decreased FMD (6.42 ± 2.07 vs 8.28% ± 1.53%, P = 0.035) than nonusers. In conclusion, AAS abuse is associated with retrograde and oscillatory SR which were associated with augmented sympathetic outflow. In addition, AAS seems to lead to inflammation characterized by increased hs-CRP. These alterations may have the potential of increasing the early risk of atherosclerotic disease in young AAS users.


Subject(s)
Anabolic Agents/adverse effects , Brachial Artery/physiopathology , Steroids/adverse effects , Substance-Related Disorders/physiopathology , Adult , Atherosclerosis , C-Reactive Protein/analysis , Case-Control Studies , Cross-Sectional Studies , Heart Rate , Humans , Male , Oscillometry , Risk Factors , Sympathetic Nervous System , Young Adult
9.
Part Fibre Toxicol ; 15(1): 40, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30340610

ABSTRACT

BACKGROUND: The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS: Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS: Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.


Subject(s)
Air Pollutants/toxicity , DNA Damage , Environmental Monitoring/methods , Epigenesis, Genetic/drug effects , Nanoparticles/toxicity , Particulate Matter/toxicity , Animals , Brazil , Cities , DNA Methylation/drug effects , Dose-Response Relationship, Drug , Male , Mice, Inbred Strains , Organ Specificity , Oxidative Stress/drug effects , Oxidative Stress/genetics , Particle Size
10.
Toxicol Appl Pharmacol ; 276(2): 129-35, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24576724

ABSTRACT

The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200mg/100g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MD group), TB treatment reduced the total number of aberrant crypt foci (ACF; p<0.05) as well as the ACF with ≥4 crypts (p<0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p<0.05) and reduced DNA damage (p<0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p<0.05). TB administration resulted in increased colonic tissue concentrations of BA (p<0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB.


Subject(s)
Anticarcinogenic Agents/pharmacology , Apoptosis/drug effects , Colonic Neoplasms/prevention & control , DNA Damage , Histone Deacetylase Inhibitors/pharmacology , Triglycerides/pharmacology , 1,2-Dimethylhydrazine , Animals , Deoxyguanosine/analogs & derivatives , Male , Precancerous Conditions/prevention & control , Rats , Rats, Wistar , Weight Gain/drug effects
11.
J Anal Toxicol ; 48(5): 314-331, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38334744

ABSTRACT

Urine toxicological analysis is a relevant tool in both clinical and forensic scenarios, enabling the diagnosis of acute poisonings, elucidation of deaths, verification of substance use in the workplace and identification of drug-facilitated crimes. For these analyses, the dilute-and-shoot technique associated with liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS) is a promising alternative since it has demonstrated satisfactory results and broad applicability. This study developed and validated a comprehensive LC-MS-MS screening method to analyze 95 illicit drugs and medicines in urine samples and application to clinical and forensic Brazilian cases. The dilute-and-shoot protocol was defined through multivariate optimization studies and was set using 100 µL of sample and 300 µL of solvent. The total chromatographic run time was 7.5 min. The method was validated following the recommendations of the ANSI/ASB Standard 036 Guideline. The lower limits of quantification varied from 20 to 100 ng/mL. Within-run and between-run precision coefficient of variations% were <20%, and bias was within ± 20%. Only 4 of the 95 analytes presented significant ionization suppression or enhancement (>25%). As proof of applicability, 839 urine samples from in vivo and postmortem cases were analyzed. In total, 90.9% of the analyzed samples were positive for at least one substance, and 78 of the 95 analytes were detected. The most prevalent substances were lidocaine (40.2%), acetaminophen (38.0%) and benzoylecgonine (31.5%). The developed method proved to be an efficient and simplified alternative for analyzing 95 therapeutic and illicit drugs in urine samples. Additionally, the results obtained from sample analysis are essential for understanding the profile of Brazilian substance use, serving as a valuable database for the promotion of health and safety public policies.


Subject(s)
Forensic Toxicology , Illicit Drugs , Substance Abuse Detection , Tandem Mass Spectrometry , Humans , Illicit Drugs/urine , Brazil , Substance Abuse Detection/methods , Chromatography, Liquid , Forensic Toxicology/methods , Reproducibility of Results , Limit of Detection , Liquid Chromatography-Mass Spectrometry
12.
Br J Pharmacol ; 181(7): 1128-1149, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37721089

ABSTRACT

BACKGROUND AND PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of paclitaxel, affecting 30-50% of patients. Increased survival and concern with patients' quality of life have encouraged the search for new tools to prevent paclitaxel-induced neuropathy. This study presents the glitazone 4-[(Z)-(2,4-dioxo-1,3-thiazolidin-5-ylidene)methyl]-N-phenylbenzene-sulfonamide (TZD-A1) as a partial agonist of peroxisome proliferator-activated receptor γ (PPARγ), its toxicological profile and effects on paclitaxel-induced CIPN in mice. EXPERIMENTAL APPROACH: Interactions of TZD-A1 with PPARγ were analysed using in silico docking and in vitro reporter gene assays. Pharmacokinetics and toxicity were evaluated using in silico, in vitro and in vivo (C57Bl/6 mice) analyses. Effects of TZD-A1 on CIPN were investigated in paclitaxel-injected mice. Axonal and dorsal root ganglion damage, mitochondrial complex activity and cytokine levels, brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2) and PPARγ, were also measured. KEY RESULTS: Docking analysis predicted TZD-A1 interactions with PPARγ compatible with partial agonism, which were corroborated by in vitro reporter gene assays. Good oral bioavailability and safety profile of TZD-A1 were shown in silico, in vitro and in vivo. Paclitaxel-injected mice, concomitantly treated with TZD-A1 by i.p. or oral administration, exhibited decreased mechanical and thermal hypersensitivity, effects apparently mediated by inhibition of neuroinflammation and mitochondrial damage, through increasing Nrf2 and PPARγ levels, and up-regulating BDNF. CONCLUSION AND IMPLICATIONS: TZD-A1, a partial agonist of PPARγ, provided neuroprotection and reduced hypersensitivity induced by paclitaxel. Allied to its safety profile and good bioavailability, TZD-A1 is a promising drug candidate to prevent and treat CIPN in cancer patients.


Subject(s)
Paclitaxel , Peripheral Nervous System Diseases , Humans , Mice , Animals , Paclitaxel/toxicity , PPAR gamma , Brain-Derived Neurotrophic Factor , NF-E2-Related Factor 2 , Neuroinflammatory Diseases , Quality of Life , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/prevention & control
13.
Bioanalysis ; 15(16): 1021-1032, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37431824

ABSTRACT

Background: The increasing prevalence of poisoning cases related to antidepressants and antipsychotics has raised concerns. Methods: To address this issue, a new adaptation of the dried plasma spot technique was developed using a 24-well plate and fast gas chromatography-mass spectrometry. The method involves the optimization of extraction variables and sample preparation, and was successfully validated. Results: The limits of quantitation ranged from 20 to 60 ng/ml, and accuracy ranged from 87.8% to 112.2%. The technique was applied to 102 human plasma samples from suspected poisoning cases, with positivity of 90.2%. Conclusion: This method provides a cheap, easy to implement and fast approach, making it ideal for toxicological emergency laboratories and promoting valuable support for healthcare professionals managing poisoning cases involving antidepressants and antipsychotics.


Subject(s)
Antipsychotic Agents , Humans , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry/methods , Antidepressive Agents , Plasma , Dried Blood Spot Testing/methods , Reproducibility of Results
14.
Anal Methods ; 15(30): 3752-3757, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37475605

ABSTRACT

This technical note describes a novel and straightforward experimental strategy for the extraction/capture of DNA using magnetic ionic liquid (MIL) followed by real time-polymerase chain reaction (qPCR) analysis. An affordable and low-cost magneto-based multiwell platform was first examined for capturing DNA allowing for simultaneous extractions that increased the analysis throughput of the experimental workflow. This configuration was composed of a series of neodymium rod magnets attached to a multiwell device in which a magneto-active extraction phase (MIL) was suspended for a single drop microextraction (SDME) approach. In this configuration, up to 32 extractions were able to be performed simultaneously, and DNA was successfully extracted from aqueous samples. Furthermore, as a proof-of-concept, this affordable and simple experimental strategy proved to be efficient for the extraction/capture of DNA from challenging samples such as whole blood without any pretreatment. This fact also consists of important feature compared to previous methodologies that required additional steps of sample preparation.


Subject(s)
Ionic Liquids , DNA , Magnets , Real-Time Polymerase Chain Reaction/methods , Magnetic Phenomena
15.
Front Nutr ; 10: 1150189, 2023.
Article in English | MEDLINE | ID: mdl-36969815

ABSTRACT

Introduction: The implications of maternal overnutrition on offspring metabolic and neuroimmune development are well-known. Increasing evidence now suggests that maternal obesity and poor dietary habits during pregnancy and lactation can increase the risk of central and peripheral metabolic dysregulation in the offspring, but the mechanisms are not sufficiently established. Furthermore, despite many studies addressing preventive measures targeted at the mother, very few propose practical approaches to treat the damages when they are already installed. Methods: Here we investigated the potential of cannabidiol (CBD) treatment to attenuate the effects of maternal obesity induced by a cafeteria diet on hypothalamic inflammation and the peripheral metabolic profile of the offspring in Wistar rats. Results: We have observed that maternal obesity induced a range of metabolic imbalances in the offspring in a sex-dependant manner, with higher deposition of visceral white adipose tissue, increased plasma fasting glucose and lipopolysaccharides (LPS) levels in both sexes, but the increase in serum cholesterol and triglycerides only occurred in females, while the increase in plasma insulin and the homeostatic model assessment index (HOMA-IR) was only observed in male offspring. We also found an overexpression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin (IL) 6, and interleukin (IL) 1ß in the hypothalamus, a trademark of neuroinflammation. Interestingly, the expression of GFAP, a marker for astrogliosis, was reduced in the offspring of obese mothers, indicating an adaptive mechanism to in utero neuroinflammation. Treatment with 50 mg/kg CBD oil by oral gavage was able to reduce white adipose tissue and revert insulin resistance in males, reduce plasma triglycerides in females, and attenuate plasma LPS levels and overexpression of TNFα and IL6 in the hypothalamus of both sexes. Discussion: Together, these results indicate an intricate interplay between peripheral and central counterparts in both the pathogenicity of maternal obesity and the therapeutic effects of CBD. In this context, the impairment of internal hypothalamic circuitry caused by neuroinflammation runs in tandem with the disruptions of important metabolic processes, which can be attenuated by CBD treatment in both ends.

16.
J Pharm Biomed Anal ; 222: 115082, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36183577

ABSTRACT

The diagnostic methods in an emergency scenario must be simple, fast, and efficient to provide an effectiveness and efficient treatment, thus reducing the consequences of exposure. Considering the sample analysis, the protein precipitation combined with LC-MS/MS has been shown to be a good strategy for the simultaneous determination of compounds of toxicological interest, such as medicines and drugs of abuse. In this study, a rapid and simple multi-analyte method was developed and validated for the quantification of 57 pharmaceuticals and illicit drugs in plasma samples. Sample pre-treatment consists of protein precipitation of 50 µL of the sample with 240 µL of organic solvent mixture (MeOH:ACN, 3:1, v/v), centrifugation, and injection into the LC-MS/MS, with a chromatographic run time of 7 min. The method was validated considering lower limit of quantification (LLOQ), interferences, linearity, precision, accuracy, dilution integrity, carryover, and matrix effect. The LLOQs ranged from 5 to 20 ng/mL and all analytes were linear (r2>0.99) in the tested concentration ranges. The method proved to be precise and accurate, presenting QC concentrations for all analytes within acceptable limits by the guideline used (CV % ≤20 % and bias ± 20 %). The developed method was successfully applied in 470 plasma samples of real cases of poisoning. A total of 80 % of the samples were positive for at least one substance, with acetaminophen (32.1 %), diazepam (25.1 %), and lidocaine (18.9 %) being the most detected. The most prevalent exposure circumstance among the cases was suicide attempt. The most frequent age groups were young adults between 20 and 29 years old and children under 5 years old. The methodology developed proved to be efficient in the simultaneous determination of 57 substances of toxicological interest, contributing to a correct diagnosis and, consequently, to the most appropriate management and treatment of the intoxicated patient. Furthermore, it is possible to observe the most commonly involved toxic agents in the Rio Grande do Sul, southern Brazil, helping to trace a profile of the poisoning patient, important in toxicovigilance actions.


Subject(s)
Illicit Drugs , Humans , Child , Child, Preschool , Young Adult , Adult , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Plasma , Brazil , Reproducibility of Results , Limit of Detection
17.
J Anal Toxicol ; 47(7): 580-587, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37506044

ABSTRACT

There is an increasing number of people affected worldwide by mental health disorders, such as depression and anxiety. One of the main courses of treatment, along with psychotherapy, is the use of psychoactive medications, like antidepressants and benzodiazepines. Also, the unprescribed use of these substances is a concerning public health issue. Hence, the analysis of psychotropic medications is mandatory in postmortem toxicology and various biological samples can be used for this detection, among them the vitreous humor (VH) stands out. Also, there is a demand for more sustainable and more efficient extraction methodologies according to green chemistry. An example is solid phase microextraction techniques (SPME), which use a solid sorbent and small solvent amounts. Biosorbents are substances of natural origin with sorptive properties, and they have been successfully used in SPME in environmental toxicology for water analysis, mainly. This study aimed to develop a sustainable, fast, cheap and simple SPME methodology using cork sheet strips as a biosorbent, to extract antidepressants, benzodiazepines and others from VH samples by liquid chromatography coupled to tandem mass spectrometry. The extraction was conducted in a 96-well plate using 200 µL of VH and optimization of relevant parameters for extraction was performed. For solvent optimization, two simplex-centroid experiments were planned for extraction and desorption and to evaluate time and pH, a Doehlert design experiment was performed. The analytical method for the determination and quantification of 17 substances was validated. The quantification limits were 5 ng/mL for all analytes and the calibration curves were linear between 5 and 30 ng/mL. This study was able to develop an efficient, cheap, simple and fast microextraction method for 17 analytes in VH, using strips of cork sheet for extraction and a 96-well plate as a container. Furthermore, this approach system could be automated for routine toxicology laboratories.


Subject(s)
Solid Phase Microextraction , Vitreous Body , Humans , Forensic Toxicology , Vitreous Body/chemistry , Solid Phase Microextraction/methods , Psychotropic Drugs/analysis , Solvents/analysis , Benzodiazepines/analysis
18.
Physiol Behav ; 260: 114068, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36567032

ABSTRACT

OBJECTIVE: To assess the effects of omega-3 (n3) supplementation on intestinal microbiota, fatty acids profile, neuroinflammation, and social memory of cafeteria diet (CAF)-fed rats. METHODS: Male Wistar rats were fed with CAF for 20 weeks. Omega-3 (500 mg/kg/day) was supplemented between the 16th and 20th week. Colon morphology, intestinal microbiota composition, short-chain fatty acids (SCFA) and lipopolysaccharide (LPS) in the plasma, fatty acids profile, TLR-4 and claudin-5 expressions in the brain, and social memory were investigated. RESULTS: CAF reduced colon length, crypts' depth, and microbiota diversity, while n3 increased the Firmicutes/Bacteroidetes ratio. CAF increased SCFA plasma levels, but n3 reduced butyrate and isobutyrate in obese rats. LPS was increased in CAF-fed rats, and n3 decreased its levels. In the cerebral cortex, n3 increased caprylic, palmitic, stearic, tricosanoic, lignoceric, myristoleic, and linoleic acids. CAF increased palmitic acid and TLR-4 expression in the cerebral cortex while decreasing claudin-5 in the hippocampus. In the social memory test, CAF-fed animals showed greater social interaction with no effect of n3. CONCLUSIONS: The lack of n3 effect in some of the evaluated parameters may be due to the severity of the obesity caused by CAF. However, n3 reduced LPS levels, suggesting its ability to reverse endotoxemia.


Subject(s)
Gastrointestinal Microbiome , Rats , Male , Animals , Rats, Wistar , Neuroinflammatory Diseases , Lipopolysaccharides/pharmacology , Claudin-5 , Toll-Like Receptor 4 , Diet , Obesity/metabolism , Dietary Supplements , Fatty Acids
19.
Anal Biochem ; 423(1): 141-6, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22330745

ABSTRACT

Lipid peroxidation (LPO) has been associated with periodontal disease, and the evaluation of malondialdehyde (MDA) in the gingival crevicular fluid (GCF), an inflammatory exudate from the surrounding tissue of the periodontium, may be useful to clarify the role of LPO in the pathogenesis of periodontal disease. We describe the validation of a method to measure MDA in the GCF using high-performance liquid chromatography. MDA calibration curves were prepared with phosphate-buffered solution spiked with increasing known concentrations of MDA. Healthy and diseased GCF samples were collected from the same patient to avoid interindividual variability. MDA response was linear in the range measured, and excellent agreement was observed between added and detected concentrations of MDA. Samples' intra- and interday coefficients of variation were below 6.3% and 12.4%, respectively. The limit of quantitation (signal/noise=5) was 0.03 µM. When the validated method was applied to the GCF, excellent agreement was observed in the MDA quantitation from healthy and diseased sites, and diseased sites presented more MDA than healthy sites (P<0.05). In this study, a validated method for MDA quantitation in GCF was established with satisfactory sensitivity, precision, and accuracy.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid , Gingival Crevicular Fluid/chemistry , Malondialdehyde/analysis , Humans , Lipid Peroxidation , Periodontal Diseases/metabolism , Periodontal Diseases/pathology
20.
J Anal Toxicol ; 46(7): 776-782, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-34518876

ABSTRACT

Synthetic drugs for recreational purposes are in constant evolution, and their consumption promotes a significant increase in intoxication cases, resulting in damaging public health. The development of analytical methodologies to confirm the consumption of illicit drugs in biological matrices is required for the control of these substances. This work exploited the development of an extraction method based on homogenous liquid-liquid microextraction with switchable hydrophilicity solvent (SHS) as extraction phase for the determination of the synthetic drugs 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine and N-methoxybenzyl-methoxyphenylethylamine derivates (25B, 25C and 25I) in postmortem blood, followed by liquid chromatography coupled to mass spectrometry in tandem. The optimized sample preparation conditions consisted of using 250 µL of ZnSO4 10% and 50 µL of NaOH 1 mol/L in the protein precipitation step; N,N-dimethylcyclohexylamine was used as SHS, 650 µL of a mixture of SHS:HCl 6 mol/L (1:1 v/v), 500 µL of whole blood, 500 µL of NaOH 10 mol/L and 1 min of extraction time. The proposed method was validated, providing determination coefficients higher than 0.99 for all analytes; limit of detection and limit of quantitation ranged from 0.1 to 10 ng/mL; intra-run precision from 2.16% to 9.19%; inter-run precision from 2.39% to 9.59%; bias from 93.57% to 115.71% and matrix effects from 28.94% to 51.54%. The developed method was successfully applied to four authentic postmortem blood samples from synthetic drugs users, and it was found to be reliable with good selectivity.


Subject(s)
3,4-Methylenedioxyamphetamine , Liquid Phase Microextraction , N-Methyl-3,4-methylenedioxyamphetamine , Synthetic Drugs , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Liquid Phase Microextraction/methods , Sodium Hydroxide , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL