Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 20(10): e1012127, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39374269

ABSTRACT

The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.


Subject(s)
Actins , Mitochondria , Mitochondrial Dynamics , Protozoan Proteins , Toxoplasma , Toxoplasma/metabolism , Toxoplasma/genetics , Actins/metabolism , Mitochondria/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/metabolism , Toxoplasmosis/genetics , Humans , Nonmuscle Myosin Type IIA/metabolism , Nonmuscle Myosin Type IIA/genetics , Animals
2.
J Cell Sci ; 135(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36314270

ABSTRACT

The single mitochondrion of Toxoplasma gondii is highly dynamic, being predominantly in a peripherally distributed lasso-shape in intracellular parasites and collapsed in extracellular parasites. The peripheral positioning of the mitochondrion is associated with apparent contacts between the mitochondrion membrane and the parasite pellicle. The outer mitochondrial membrane-associated protein LMF1 is critical for the correct positioning of the mitochondrion. Intracellular parasites lacking LMF1 fail to form the lasso-shaped mitochondrion. To identify other proteins that tether the mitochondrion of the parasite to the pellicle, we performed a yeast two-hybrid screen for LMF1 interactors. We identified 70 putative interactors localized in different cellular compartments, such as the apical end of the parasite, mitochondrial membrane and the inner membrane complex (IMC), including with the pellicle protein IMC10. Using protein-protein interaction assays, we confirmed the interaction of LMF1 with IMC10. Conditional knockdown of IMC10 does not affect parasite viability but severely affects mitochondrial morphology in intracellular parasites and mitochondrial distribution to the daughter cells during division. In effect, IMC10 knockdown phenocopies disruption of LMF1, suggesting that these two proteins define a novel membrane tether between the mitochondrion and the IMC in Toxoplasma. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Parasites , Toxoplasma , Animals , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Parasites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/metabolism
3.
Curr Opin Cell Biol ; 76: 102085, 2022 06.
Article in English | MEDLINE | ID: mdl-35569259

ABSTRACT

Integral membrane protein complexes control key cellular functions in eukaryotes by defining membrane-bound spaces within organelles and mediating inter-organelles contacts. Despite the critical role of membrane complexes in cell biology, most of our knowledge is from a handful of model systems, primarily yeast and mammals, while a full functional and evolutionary understanding remains incomplete without the perspective from a broad range of divergent organisms. Apicomplexan parasites are single-cell eukaryotes whose survival depends on organelle compartmentalisation and communication. Studies of a model apicomplexan, Toxoplasma gondii, reveal unexpected divergence in the composition and function of complexes previously considered broadly conserved, such as the mitochondrial ATP synthase and the tethers mediating ER-mitochondria membrane contact sites. Thus, Toxoplasma joins the repertoire of divergent model eukaryotes whose research completes our understanding of fundamental cell biology.


Subject(s)
Toxoplasma , Animals , Eukaryota/metabolism , Mammals/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Organelles/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL