Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 20(7): e1012392, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052670

ABSTRACT

Cell migration modes can vary, depending on a number of environmental and intracellular factors. The high motility of the pathogenic amoeba Entamoeba histolytica is a decisive factor in its ability to cross the human colonic barrier. We used quantitative live imaging techniques to study the migration of this parasite on fibronectin, a key tissue component. Entamoeba histolytica amoebae on fibronectin contain abundant podosome-like structures. By using a laminar flow chamber, we determined that the adhesion forces generated on fibronectin were twice those on non-coated glass. When migrating on fibronectin, elongated amoeboid cells converted into fan-shaped cells characterized by the presence of a dorsal column of F-actin and a broad cytoplasmic extension at the front. The fan shape depended on the Arp2/3 complex, and the amoebae moved laterally and more slowly. Intracellular measurements of physical variables related to fluid dynamics revealed that cytoplasmic pressure gradients were weaker within fan-shaped cells; hence, actomyosin motors might be less involved in driving the cell body forward. We also found that the Rho-associated coiled-coil containing protein kinase regulated podosome dynamics. We conclude that E. histolytica spontaneously changes its migration mode as a function of the substrate composition. This adaptive ability might favour E. histolytica's invasion of human colonic tissue. By combining microfluidic experiments, mechanical modelling, and image analysis, our work also introduces a computational pipeline for the study of cell migration.

2.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34878112

ABSTRACT

Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (DHA-PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses showed that human umbilical vein endothelial cells (HUVECs) subjected to a DHA diet undergo a 6-fold enrichment in DHA-PLs at the plasma membrane (PM) at the expense of monounsaturated oleic acid-containing PLs (OA-PLs). Consequently, DHA-PL enrichment at the PM induces a reduction in cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM lead to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PL levels in membranes affect cell biomechanical properties.


Subject(s)
Docosahexaenoic Acids , Phospholipids , Animals , Cell Membrane/metabolism , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , Endothelial Cells/metabolism , Humans , Membrane Fusion , Phospholipids/metabolism
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34504012

ABSTRACT

The interleukin-2 receptor (IL-2R) is a cytokine receptor essential for immunity that transduces proliferative signals regulated by its uptake and degradation. IL-2R is a well-known marker of clathrin-independent endocytosis (CIE), a process devoid of any coat protein, raising the question of how the CIE vesicle is generated. Here, we investigated the impact of IL-2Rγ clustering in its endocytosis. Combining total internal reflection fluorescence (TIRF) live imaging of a CRISPR-edited T cell line endogenously expressing IL-2Rγ tagged with green fluorescent protein (GFP), with multichannel imaging, single-molecule tracking, and quantitative analysis, we were able to decipher IL-2Rγ stoichiometry at the plasma membrane in real time. We identified three distinct IL-2Rγ cluster populations. IL-2Rγ is secreted to the cell surface as a preassembled small cluster of three molecules maximum, rapidly diffusing at the plasma membrane. A medium-sized cluster composed of four to six molecules is key for IL-2R internalization and is promoted by interleukin 2 (IL-2) binding, while larger clusters (more than six molecules) are static and inefficiently internalized. Moreover, we identified membrane cholesterol and the branched actin cytoskeleton as key regulators of IL-2Rγ clustering and IL-2-induced signaling. Both cholesterol depletion and Arp2/3 inhibition lead to the assembly of large IL-2Rγ clusters, arising from the stochastic interaction of receptor molecules in close correlation with their enhanced lateral diffusion at the membrane, thus resulting in a default in IL-2R endocytosis. Despite similar clustering outcomes, while cholesterol depletion leads to a sustained IL-2-dependent signaling, Arp2/3 inhibition prevents signal initiation. Taken together, our results reveal the importance of cytokine receptor clustering for CIE initiation and signal transduction.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Endocytosis , Receptors, Interleukin-2/metabolism , T-Lymphocytes/metabolism , Biological Transport , Humans , Signal Transduction
4.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240072

ABSTRACT

Entamoeba histolytica is a protozoan parasite and the causative agent of amoebiasis in humans. This amoeba invades human tissues by taking advantage of its actin-rich cytoskeleton to move, enter the tissue matrix, kill and phagocyte the human cells. During tissue invasion, E. histolytica moves from the intestinal lumen across the mucus layer and enters the epithelial parenchyma. Faced with the chemical and physical constraints of these diverse environments, E. histolytica has developed sophisticated systems to integrate internal and external signals and to coordinate cell shape changes and motility. Cell signalling circuits are driven by interactions between the parasite and extracellular matrix, combined with rapid responses from the mechanobiome in which protein phosphorylation plays an important role. To understand the role of phosphorylation events and related signalling mechanisms, we targeted phosphatidylinositol 3-kinases followed by live cell imaging and phosphoproteomics. The results highlight 1150 proteins, out of the 7966 proteins within the amoebic proteome, as members of the phosphoproteome, including signalling and structural molecules involved in cytoskeletal activities. Inhibition of phosphatidylinositol 3-kinases alters phosphorylation in important members of these categories; a finding that correlates with changes in amoeba motility and morphology, as well as a decrease in actin-rich adhesive structures.


Subject(s)
Amebiasis , Entamoeba histolytica , Humans , Actins/metabolism , Entamoeba histolytica/metabolism , Actin Cytoskeleton/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protozoan Proteins/metabolism
5.
J Cell Sci ; 133(22)2020 11 23.
Article in English | MEDLINE | ID: mdl-33093241

ABSTRACT

Accurate measurements of cell morphology and behaviour are fundamentally important for understanding how disease, molecules and drugs affect cell function in vivo Here, by using muscle stem cell (muSC) responses to injury in zebrafish as our biological paradigm, we established a 'ground truth' for muSC behaviour. This revealed that segmentation and tracking algorithms from commonly used programs are error-prone, leading us to develop a fast semi-automated image analysis pipeline that allows user-defined parameters for segmentation and correction of cell tracking. Cell Tracking Profiler (CTP) is a package that runs two existing programs, HK Means and Phagosight within the Icy image analysis suite, to enable user-managed cell tracking from 3D time-lapse datasets to provide measures of cell shape and movement. We demonstrate how CTP can be used to reveal changes to cell behaviour of muSCs in response to manipulation of the cell cytoskeleton by small-molecule inhibitors. CTP and the associated tools we have developed for analysis of outputs thus provide a powerful framework for analysing complex cell behaviour in vivo from 4D datasets that are not amenable to straightforward analysis.


Subject(s)
Cell Tracking , Zebrafish , Algorithms , Animals , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Movement
7.
Cytometry A ; 101(12): 1068-1083, 2022 12.
Article in English | MEDLINE | ID: mdl-35614552

ABSTRACT

The progress of digital pathology in recent years has been an opportunity for the development of automated image analysis algorithms for quantitative measurements and computer aided diagnosis. With those new methods comes the need for high staining quality and reproducibility, as image analysis tools are typically more sensible to slight stain variations than trained pathologists. This article presents a method for the automated analysis of cytology slides stains specifically adapted to the challenges encountered in digital cytopathology. In particular, the variety of cell types in cytology slides, the 3D distribution of the cellular material, the presence of superposed cells and the need for independent analysis of sub-cellular compartments are addressed. The proposed method is applied to the quantification of staining variations for quality control, resulting from changes in the staining protocol such as reagent immersion time or a reagent change. Another demonstrated application is the selection of staining protocol parameters that maximize the visible details in nucleus. Finally the analysis pipeline is also used to compare different stain normalization algorithms on digital cytology slides. Code available at: https://gitlab.com/vitadx/articles/automated_staining_analysis.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Reproducibility of Results , Staining and Labeling , Image Processing, Computer-Assisted/methods , Cytodiagnosis , Coloring Agents
8.
J Am Soc Nephrol ; 32(2): 479-494, 2021 02.
Article in English | MEDLINE | ID: mdl-33239394

ABSTRACT

BACKGROUND: Binding of donor-specific antibodies (DSAs) to kidney allograft endothelial cells that does not activate the classic complement cascade can trigger the recruitment of innate immune effectors, including NK cells. Activated NK cells contribute to microvascular inflammation leading to chronic antibody-mediated rejection (AMR). Recipient NK cells can also trigger antibody-independent microvascular inflammation by sensing the absence of self HLA class I molecules ("missing self") on allograft endothelial cells. This translational study investigated whether the condition of missing self amplifies DSA-dependent NK cell activation to worsen chronic AMR. METHODS AND RESULTS: Among 1682 kidney transplant recipients who underwent an allograft biopsy at Lyon University Hospital between 2004 and 2017, 135 fulfilled the diagnostic criteria for AMR and were enrolled in the study. Patients with complement-fixing DSAs identified by a positive C3d binding assay (n=73, 54%) had a higher risk of transplant failure (P=0.002). Among the remaining patients with complement-independent chronic AMR (n=62, 46%), those in whom missing self was identified through donor and recipient genotyping exhibited worse allograft survival (P=0.02). In multivariable analysis, only proteinuria (HR: 7.24; P=0.01) and the presence of missing self (HR: 3.57; P=0.04) were independent predictors for transplant failure following diagnosis of chronic AMR. Cocultures of human NK cells and endothelial cells confirmed that addition of missing self to DSA-induced NK cell activation increased endothelial damage. CONCLUSIONS: The assessment of missing self at the time of diagnosis of chronic AMR identifies patients at higher risk for kidney transplant failure.


Subject(s)
Allografts/pathology , Complement Activation/physiology , Graft Rejection/etiology , Histocompatibility Antigens Class I/blood , Kidney Transplantation/adverse effects , Killer Cells, Natural/physiology , Adult , Allografts/immunology , Cell Culture Techniques , Complement C3d/metabolism , Endothelial Cells/physiology , Female , Graft Rejection/blood , Graft Rejection/pathology , Graft Survival , Humans , Killer Cells, Natural/pathology , Male , Middle Aged , Young Adult
9.
Cell Microbiol ; 22(8): e13203, 2020 08.
Article in English | MEDLINE | ID: mdl-32175652

ABSTRACT

Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human-parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three-dimensional (3D)-intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria-like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D-intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.


Subject(s)
Amebiasis/parasitology , Entamoeba histolytica/pathogenicity , Intestines/microbiology , Intestines/pathology , Models, Anatomic , Amebiasis/immunology , Dysentery, Amebic/pathology , Entamoeba histolytica/immunology , Host-Parasite Interactions , Humans , Inflammation , Microscopy, Confocal , Virulence
10.
J Am Soc Nephrol ; 31(9): 2168-2183, 2020 09.
Article in English | MEDLINE | ID: mdl-32641395

ABSTRACT

BACKGROUND: Circulating donor-specific anti-HLA antibodies (HLA-DSAs) are often absent in serum of kidney allograft recipients whose biopsy specimens demonstrate histology of antibody-mediated rejection (ABMR). It is unclear whether cases involving ABMR histology without detectable HLA-DSAs represent a distinct clinical and molecular phenotype. METHODS: In this multicenter cohort study, we integrated allograft microarray analysis with extensive clinical and histologic phenotyping from 224 kidney transplant recipients between 2011 and 2017. We used the term ABMR histology for biopsy specimens that fulfill the first two Banff 2017 criteria for ABMR, irrespective of HLA-DSA status. RESULTS: Of 224 biopsy specimens, 56 had ABMR histology; 26 of these (46.4%) lacked detectable serum HLA-DSAs. Biopsy specimens with ABMR histology showed overexpression of transcripts mostly related to IFNγ-induced pathways and activation of natural killer cells and endothelial cells. HLA-DSA-positive and HLA-DSA-negative biopsy specimens with ABMR histology displayed similar upregulation of pathways and enrichment of infiltrating leukocytes. Transcriptional heterogeneity observed in biopsy specimens with ABMR histology was not associated with HLA-DSA status but was caused by concomitant T cell-mediated rejection. Compared with cases lacking ABMR histology, those with ABMR histology and HLA-DSA had higher allograft failure risk (hazard ratio [HR], 7.24; 95% confidence interval [95% CI], 3.04 to 17.20) than cases without HLA-DSA (HR, 2.33; 95% CI, 0.85 to 6.33), despite the absence of transcriptional differences. CONCLUSIONS: ABMR histology corresponds to a robust intragraft transcriptional signature, irrespective of HLA-DSA status. Outcome after ABMR histology is not solely determined by the histomolecular presentation but is predicted by the underlying etiologic factor. It is important to consider this heterogeneity in further research and in treatment decisions for patients with ABMR histology.


Subject(s)
Graft Rejection/etiology , HLA Antigens/immunology , Isoantibodies/blood , Kidney Transplantation/adverse effects , Transcription, Genetic , Adult , Aged , Female , Graft Rejection/pathology , Graft Survival , Humans , Kidney/metabolism , Kidney/pathology , Male , Middle Aged , Tissue Donors , Transplantation, Homologous
11.
EMBO J ; 35(19): 2120-2138, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27550960

ABSTRACT

Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α-synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α-synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co-cultured neurons, here we show that α-synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α-synuclein fibrils are able to seed soluble α-synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α-synuclein aggregates in lysosomes dispose of this material by hijacking TNT-mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies.


Subject(s)
Amyloid/metabolism , Cell Communication , Lysosomes/metabolism , Nanotubes , Neurons/physiology , alpha-Synuclein/metabolism , Animals , Cells, Cultured , Coculture Techniques , Mice , Microscopy, Fluorescence
12.
Nat Methods ; 14(12): 1141-1152, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29083403

ABSTRACT

We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.


Subject(s)
Algorithms , Cell Tracking/methods , Image Interpretation, Computer-Assisted , Benchmarking , Cell Line , Humans
13.
EMBO J ; 34(16): 2147-61, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26124312

ABSTRACT

Endocytosis controls many functions including nutrient uptake, cell division, migration and signal transduction. A clathrin- and caveolin-independent endocytosis pathway is used by important physiological cargos, including interleukin-2 receptors (IL-2R). However, this process lacks morphological and dynamic data. Our electron microscopy (EM) and tomography studies reveal that IL-2R-pits and vesicles are initiated at the base of protrusions. We identify the WAVE complex as a specific endocytic actor. The WAVE complex interacts with IL-2R, via a WAVE-interacting receptor sequence (WIRS) present in the receptor polypeptide, and allows for receptor clustering close to membrane protrusions. In addition, using total internal reflection fluorescent microscopy (TIRF) and automated analysis we demonstrate that two timely distinct bursts of actin polymerization are required during IL-2R uptake, promoted first by the WAVE complex and then by N-WASP. Finally, our data reveal that dynamin acts as a transition controller for the recruitment of Arp2/3 activators required for IL-2R endocytosis. Altogether, our work identifies the spatio-temporal specific role of factors initiating clathrin-independent endocytosis by a unique mechanism that does not depend on the deformation of a flat membrane, but rather on that of membrane protrusions.


Subject(s)
Cell Membrane/metabolism , Endocytosis , Receptors, Interleukin-2/metabolism , Actins/metabolism , Cell Line , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Electron Microscope Tomography , Humans , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Protein Interaction Mapping , Protein Multimerization , Wiskott-Aldrich Syndrome Protein Family/metabolism
14.
Opt Express ; 27(2): 855-871, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30696165

ABSTRACT

Here we present a novel phase-sensitive swept-source optical coherence tomography (PhS-SS-OCT) system. The simultaneously recorded calibration signal, which is commonly used in SS-OCT to stabilize the phase, is randomly sub-sampled during the acquisition, and it is later reconstructed based on the Compressed Sensing (CS) theory. We first mathematically investigated the method, and verified it through computer simulations. We then conducted a vibrational frequency test and a flow velocity measurement in phantoms to demonstrate the system's capability of handling phase-sensitive tasks. The proposed scheme shows excellent phase stability with greatly discounted data bandwidth compared with conventional procedures. We further showcased the usefulness of the system in biological samples by detecting the blood flow in ex vivo swine left marginal artery. The proposed system is compatible with most of the existing SS-OCT systems and could be a preferred solution for future high-speed phase-sensitive applications.

15.
Parasitology ; 146(9): 1140-1149, 2019 08.
Article in English | MEDLINE | ID: mdl-29212561

ABSTRACT

The protozoan parasite Entamoeba histolytica is the microbial agent of amoebiasis - an infection that is endemic worldwide and is associated with high morbidity and mortality rates. As the disease develops, virulent E. histolytica deplete the mucus layer, interact with the intestinal epithelium, and then degrade the colonic mucosa and disrupt the extracellular matrix (ECM). Our research demonstrated that virulent parasites with an invasive phenotype display rapid, highly specific changes in their transcriptome (notably for essential factors involved in carbohydrate metabolism and the processing of glycosylated residues). Moreover, combined activation of parasite and host lytic enzymes leads to the destruction of the intestinal parenchyma. Together, these enzymes degrade the mucus layer and the ECM, and trigger the inflammatory response essential to the development of amoebiasis.


Subject(s)
Amebiasis/parasitology , Entamoeba histolytica/pathogenicity , Host-Parasite Interactions , Intestinal Mucosa/physiology , Intestinal Mucosa/parasitology , Signal Transduction , Amebiasis/physiopathology , Animals , Colon/cytology , Colon/parasitology , Genome, Bacterial , Humans , Inflammation , Transcriptome
16.
Nature ; 502(7472): 567-70, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24097348

ABSTRACT

In most eukaryotic cells microtubules undergo post-translational modifications such as acetylation of α-tubulin on lysine 40, a widespread modification restricted to a subset of microtubules that turns over slowly. This subset of stable microtubules accumulates in cell protrusions and regulates cell polarization, migration and invasion. However, mechanisms restricting acetylation to these microtubules are unknown. Here we report that clathrin-coated pits (CCPs) control microtubule acetylation through a direct interaction of the α-tubulin acetyltransferase αTAT1 (refs 8, 9) with the clathrin adaptor AP2. We observe that about one-third of growing microtubule ends contact and pause at CCPs and that loss of CCPs decreases lysine 40 acetylation levels. We show that αTAT1 localizes to CCPs through a direct interaction with AP2 that is required for microtubule acetylation. In migrating cells, the polarized orientation of acetylated microtubules correlates with CCP accumulation at the leading edge, and interaction of αTAT1 with AP2 is required for directional migration. We conclude that microtubules contacting CCPs become acetylated by αTAT1. In migrating cells, this mechanism ensures the acetylation of microtubules oriented towards the leading edge, thus promoting directional cell locomotion and chemotaxis.


Subject(s)
Acetyltransferases/metabolism , Clathrin/metabolism , Coated Pits, Cell-Membrane/metabolism , Microtubules/metabolism , Acetylation , Adaptor Protein Complex 2/metabolism , Biocatalysis , Cell Movement , Coated Pits, Cell-Membrane/enzymology , HeLa Cells , Humans , Microtubules/chemistry , Protein Binding , Tubulin/metabolism
17.
EMBO Rep ; 17(6): 858-73, 2016 06.
Article in English | MEDLINE | ID: mdl-27215606

ABSTRACT

Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin-like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1-dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP-induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved.


Subject(s)
GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Septins/metabolism , Actomyosin/metabolism , Biological Evolution , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Dynamins , Gene Knockdown Techniques , Gene Silencing , HeLa Cells , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Septins/genetics
18.
J Neurosci ; 36(2): 518-31, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758842

ABSTRACT

Numerous clinical reports underscore the frequency of olfactory impairments in patients suffering from major depressive disorders (MDDs), yet the underlying physiopathological mechanisms remain poorly understood. We hypothesized that one key link between olfactory deficits and MDD lies in hypercortisolemia, a cardinal symptom of MDD. Corticosterone (CORT) is known to negatively correlate with hippocampal neurogenesis, yet its effects on olfactory neurogenesis and olfaction remain unknown. Here we used a rodent model of anxiety/depression-like states, which is based on chronic CORT administration and studied the effects of the antidepressant fluoxetine (FLX) on behavior, olfaction, and adult neurogenesis in the dentate gyrus (DG), olfactory bulb (OB), and the olfactory epithelium (OE). Chronic CORT had no effect on cell proliferation in the OE or on olfactory sensory neurons projecting to the OB, but induced pronounced deficits in olfactory acuity, fine discrimination of odorants and olfactory memory. These alterations were accompanied by a significant decrease in the number of adult-born neurons in both the DG and OB. Remarkably, FLX not only reversed depression-like states as expected, but also improved olfactory acuity, memory, and restored impaired adult neurogenesis. However, fine olfactory discrimination was not restored. Morphological analysis of adult-born neurons in both the DG and the OB showed that dendritic complexity was not significantly affected by CORT, but was increased by FLX. These findings demonstrate an essential role for glucocorticoids in triggering olfactory impairments in MDD and highlight a novel therapeutic effect of FLX. SIGNIFICANCE STATEMENT: Increasing clinical reports show that major depression is characterized by pronounced olfactory deficits, yet the underlying mechanisms remain unknown. In this work, we used an endocrine model of depression to study whether hypothalamic-pituitary-adrenal axis perturbation could be sufficient to provoke olfactory impairments. We found that chronic corticosterone not only induces marked deficits in olfactory acuity, fine discrimination and olfactory memory, but also significantly decreases bulbar and hippocampal neurogenesis. Importantly, the antidepressant fluoxetine restores both adult neurogenesis and depressive states, and improves most olfactory functions. Our data reveal that impairment of hypothalamic-pituitary-adrenal axis during depression can lead to olfactory deficits and that the neurogenic effects of selective serotonin reuptake inhibitor antidepressants can successfully restore certain olfactory functions.


Subject(s)
Anxiety/complications , Depression/complications , Neurogenesis/physiology , Olfaction Disorders/etiology , Olfaction Disorders/pathology , Animals , Anti-Inflammatory Agents/toxicity , Antidepressive Agents, Second-Generation/therapeutic use , Anxiety/chemically induced , Anxiety/drug therapy , Cell Proliferation/drug effects , Corticosterone/toxicity , Depression/chemically induced , Depression/drug therapy , Disease Models, Animal , Exploratory Behavior/drug effects , Feeding Behavior/drug effects , Fluoxetine/therapeutic use , Grooming/drug effects , Male , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects , Olfactory Mucosa/metabolism , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/drug effects , Olfactory Receptor Neurons/pathology , Reaction Time/drug effects
19.
Semin Cell Dev Biol ; 46: 128-34, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26459974

ABSTRACT

Entamoeba histolytica, the causative agent of amoebiasis, is a protozoan parasite characterised by its amoeboid motility, which is essential to its survival and invasion of the human host. Elucidating the molecular mechanisms leading to invasion of human tissues by E. histolytica requires a quantitative understanding of how its cytoskeleton deforms and tailors its mode of migration to the local microenvironment. Here we review the wide range of methods available to extract biophysical information from amoeboid cells, from interventional techniques to computational modelling approaches, and discuss how recent developments in bioimaging and bioimage informatics can complement our understanding of cellular morphodynamics at the intracellular level.


Subject(s)
Amebiasis/parasitology , Entamoeba histolytica/physiology , Models, Biological , Computer Simulation , Host-Parasite Interactions , Humans , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Phase-Contrast , Movement/physiology
20.
Kidney Int ; 92(1): 214-226, 2017 07.
Article in English | MEDLINE | ID: mdl-28318622

ABSTRACT

Antibody-mediated rejection is associated with heterogeneous kidney allograft outcomes. Accurate evaluation of risk for graft loss at time of diagnosis is necessary to offer personalized treatment. In contrast with serological and molecular assessment, morpho-histological evaluation of antibody-mediated rejection lesions has not significantly evolved. This relies on Banff classifications designed to be of diagnostic discriminatory power rather than prognostic and face quantitative and qualitative limitations. Here we developed a method of Computer-assisted Analysis of Graft Inflammation (CAGI) to improve the classification of allograft inflammation. Digitization of immunostained biopsy sections, image processing and algorithm-driven analysis allowed quantification of macrophages, T cells, B cells, and granulocytes per unit surface of interstitium, capillaries or glomeruli. CAGI was performed on biopsy specimens of 52 patients with extensively phenotyped antibody-mediated rejection. Macrophage numbers in capillaries and interstitium, but not Banff scores or the amount of other immune cell subsets, correlated with donor-specific antibody (DSA) mean fluorescence intensity and DSA-C3d status. The quantity of macrophages in the interstitium and DSA-C3d status were the only independent predictors for significant allograft loss at the time of antibody-mediated rejection diagnosis (hazard ratio 3.71 and 2.34, respectively). A significant strategy integrating the DSA-C3d assay and the quantification of interstitial macrophages allowed identification of three groups with distinct renal prognosis: DSA-C3d-, DSA-C3d+/macrophages-low and DSAC3d+/macrophages-high. Thus, CAGI brings a missing piece to the antibody-mediated rejection puzzle by identifying morpho-histological processes that bridge in vitro parameters of DSA pathogenicity and graft loss. Hence, this approach could be useful in future integrated strategies of risk evaluation.


Subject(s)
Diagnosis, Computer-Assisted/methods , Glomerulonephritis/diagnosis , Graft Rejection/diagnosis , Image Interpretation, Computer-Assisted/methods , Immunity, Humoral , Immunohistochemistry/methods , Kidney Transplantation/adverse effects , Kidney/pathology , Adult , Algorithms , Allografts , Biomarkers/analysis , Biopsy , Complement C3d/analysis , Female , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Graft Rejection/immunology , Graft Rejection/pathology , Graft Survival , Humans , Isoantibodies/analysis , Kaplan-Meier Estimate , Kidney/immunology , Male , Middle Aged , Predictive Value of Tests , Prognosis , Time Factors , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL