Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Bioorg Med Chem Lett ; 18(3): 1063-6, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18162398

ABSTRACT

Proteolytic cleavage of amyloid precursor protein by beta-secretase (BACE-1) and gamma-secretase leads to formation of beta-amyloid (A beta) a key component of amyloid plaques, which are considered the hallmark of Alzheimer's disease. Small molecule inhibitors of BACE-1 may reduce levels of A beta and thus have therapeutic potential for treating Alzheimer's disease. We recently reported the identification of a novel small molecule BACE-1 inhibitor N-[2-(2,5-diphenyl-pyrrol-1-yl)-acetyl]guanidine (3.a.1). We report here the initial hit-to-lead optimization of this hit and the SAR around the aryl groups occupying the S(1) and S(2') pockets leading to submicromolar BACE-1 inhibitors.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Combinatorial Chemistry Techniques , Guanidines/chemical synthesis , Guanidines/pharmacology , Pyrroles/chemistry , Crystallography, X-Ray , Guanidines/chemistry , Molecular Conformation , Molecular Structure , Pyrroles/pharmacology , Structure-Activity Relationship
2.
J Med Chem ; 53(16): 6122-8, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20666458

ABSTRACT

Acidic mammalian chitinase (AMCase) is a member of the glycosyl hydrolase 18 family (EC 3.2.1.14) that has been implicated in the pathophysiology of allergic airway disease such as asthma. Small molecule inhibitors of AMCase were identified using a combination of high-throughput screening, fragment screening, and virtual screening techniques and characterized by enzyme inhibition and NMR and Biacore binding experiments. X-ray structures of the inhibitors in complex with AMCase revealed that the larger more potent HTS hits, e.g. 5-(4-(2-(4-bromophenoxy)ethyl)piperazine-1-yl)-1H-1,2,4-triazol-3-amine 1, spanned from the active site pocket to a hydrophobic pocket. Smaller fragments identified by FBS occupy both these pockets independently and suggest potential strategies for linking fragments. Compound 1 is a 200 nM AMCase inhibitor which reduced AMCase enzymatic activity in the bronchoalveolar lavage fluid in allergen-challenged mice after oral dosing.


Subject(s)
Chitinases/antagonists & inhibitors , Models, Molecular , Piperazines/chemical synthesis , Triazoles/chemical synthesis , Allergens/immunology , Animals , Bronchoalveolar Lavage Fluid , Catalytic Domain , Crystallography, X-Ray , Female , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Piperazines/chemistry , Piperazines/pharmacology , Protein Binding , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/enzymology , Respiratory Hypersensitivity/immunology , Structure-Activity Relationship , Surface Plasmon Resonance , Triazoles/chemistry , Triazoles/pharmacology
3.
Protein Sci ; 18(3): 569-78, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19241384

ABSTRACT

Acidic mammalian chitinase (AMCase) is a mammalian chitinase that has been implicated in allergic asthma. One of only two active mammalian chinases, AMCase, is distinguished from other chitinases by several unique features. Here, we present the novel structure of the AMCase catalytic domain, both in the apo form and in complex with the inhibitor methylallosamidin, determined to high resolution by X-ray crystallography. These results provide a structural basis for understanding some of the unique characteristics of this enzyme, including the low pH optimum and the preference for the beta-anomer of the substrate. A triad of polar residues in the second-shell is found to modulate the highly conserved chitinase active site. As a novel target for asthma therapy, structural details of AMCase activity will help guide the future design of specific and potent AMCase inhibitors.


Subject(s)
Chitinases/chemistry , Chitinases/metabolism , Hydrogen-Ion Concentration , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/metabolism , Amino Acid Sequence , Animals , Asthma/metabolism , CHO Cells , Catalytic Domain/physiology , Chitinases/genetics , Cricetinae , Cricetulus , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Substrate Specificity/physiology , Trisaccharides/metabolism
4.
J Biol Chem ; 280(31): 28468-75, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-15937332

ABSTRACT

Progesterone receptor (PR) agonists have several important applications in women's health, such as in oral contraception and post-menopausal hormone therapy. Currently, all PR agonists used clinically are steroids. Because of their interactions with other steroid receptors, steroid-metabolizing enzymes, or other steroid-signaling pathways, these drugs can pose significant side effects in some women. Efforts to discover novel nonsteroidal PR agonists with improved biological properties led to the discovery of tanaproget (TNPR). TNPR binds to the PR from various species with a higher relative affinity than reference steroidal progestins. In T47D cells, TNPR induces alkaline phosphatase activity with an EC(50) value of 0.1 nm, comparable with potent steroidal progestins such as medroxyprogesterone acetate (MPA) and trimegestone (TMG), albeit with a reduced efficacy ( approximately 60%). In a mammalian two-hybrid assay to measure PR agonist-induced interaction between steroid receptor co-activator-1 and PR, TNPR showed similar potency (EC(50) value of 0.02 nm) and efficacy to MPA and TMG. Importantly, in key animal models such as the rat ovulation inhibition assay, TNPR demonstrates full efficacy and an enhanced progestational potency (30-fold) when compared with MPA and TMG. Furthermore, TNPR has relatively weak interactions with other steroid receptors and binding proteins and little effect on cytochrome P450 metabolic pathways. Finally, the three-dimensional crystal structure of the PR ligand binding domain with TNPR has been delineated to demonstrate how this nonsteroidal ligand achieves its high binding affinity. Therefore, TNPR is a structurally novel and very selective PR agonist with an improved preclinical pharmacological profile.


Subject(s)
Benzoxazines/agonists , Pyrroles/agonists , Receptors, Progesterone/agonists , Alkaline Phosphatase/metabolism , Amino Acid Substitution , Binding Sites , Breast Neoplasms , Cell Line, Tumor , Humans , Ligands , Mutagenesis, Site-Directed , Promegestone/analogs & derivatives , Promegestone/pharmacology , Receptors, Progesterone/chemistry , Receptors, Progesterone/genetics , Recombinant Proteins/agonists , X-Ray Diffraction
5.
J Biol Chem ; 277(5): 3698-707, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11704676

ABSTRACT

The nadD gene, encoding the enzyme nicotinic acid mononucleotide (NaMN) adenylyltransferase (AT), is essential for the synthesis of NAD and subsequent viability of the cell. The nadD gene in Bacillus subtilis (yqeJ) was identified by sequence homology with other bacterial nadD genes and by biochemical characterization of the gene product. NaMN AT catalyzes the reversible adenylation of both NaMN and the nicotinamide mononucleotide (NMN) but shows specificity for the nicotinate. In contrast to other known NMN ATs, biophysical characterizations reveal it to be a dimer. The NaMN AT crystal structure was determined for both the apo enzyme and product-bound form, to 2.1 and 3.2 A, respectively. The structures reveal a "functional" dimer conserved in both crystal forms and a monomer fold common to members of the nucleotidyl-transferase alpha/beta phosphodiesterase superfamily. A structural comparison with family members suggests a new conserved motif (SXXXX(R/K)) at the N terminus of an alpha-helix, which is not part of the shared fold. Interactions of the nicotinic acid with backbone atoms indicate the structural basis for specificity.


Subject(s)
Bacillus subtilis/enzymology , Nicotinamide-Nucleotide Adenylyltransferase , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , Cloning, Molecular , Conserved Sequence , Crystallography, X-Ray , Factor Xa/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Molecular Weight , Nucleotidyltransferases/isolation & purification , Peptide Fragments/chemistry , Protein Conformation , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL