ABSTRACT
BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.
Subject(s)
Imidazoles , Induced Pluripotent Stem Cells , Mitochondrial Diseases , Pyridazines , Humans , Animals , Mice , Protein Serine-Threonine Kinases/metabolism , Cardiotoxicity/pathology , Proteomics , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Protein Kinase Inhibitors/toxicity , Mitochondrial Diseases/pathology , Adenosine TriphosphateABSTRACT
Due to different nucleotide preferences at target sites, no single Cas9 is capable of editing all sequences. Thus, this highlights the need to establish a Cas9 repertoire covering all sequences for efficient genome editing. Cas9s with simple protospacer adjacent motif (PAM) requirements are particularly attractive to allow for a wide range of genome editing, but identification of such Cas9s from thousands of Cas9s in the public database is a challenge. We previously identified PAMs for 16 SaCas9 orthologs. Here, we compared the PAM-interacting (PI) domains in these orthologs and found that the serine residue corresponding to SaCas9 N986 was associated with the simple NNGG PAM requirement. Based on this discovery, we identified five additional SaCas9 orthologs that recognize the NNGG PAM. We further identified three amino acids that determined the NNGG PAM requirement of SaCas9. Finally, we engineered Sha2Cas9 and SpeCas9 to generate high-fidelity versions of Cas9s. Importantly, these natural and engineered Cas9s displayed high activities and distinct nucleotide preferences. Our study offers a new perspective to identify SaCas9 orthologs with NNGG PAM requirements, expanding the Cas9 repertoire.
Subject(s)
Recognition, Psychology , Serine , Serine/genetics , Amino Acids , Databases, Factual , NucleotidesABSTRACT
BACKGROUND: Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS: Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS: In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS: Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.
Subject(s)
Atrial Fibrillation , Protein Phosphatase 1 , Stroke , Animals , Humans , Mice , Atrial Fibrillation/metabolism , Heart Atria/metabolism , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolismABSTRACT
Given the increasing popularity of electronic cigarettes (e-cigs), it is imperative to evaluate the potential health risks of e-cigs, especially in users with preexisting health concerns such as pulmonary arterial hypertension (PAH). The aim of the present study was to investigate whether differential susceptibility exists between healthy and patients with PAH to e-cig exposure and the molecular mechanisms contributing to it. Patient-specific induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from healthy individuals and patients with PAH were used to investigate whether e-cig contributes to the pathophysiology of PAH and affects EC homeostasis in PAH. Our results showed that PAH iPSC-ECs showed a greater amount of damage than healthy iPSC-ECs upon e-cig exposure. Transcriptomic analyses revealed that differential expression of Akt3 may be responsible for increased autophagic flux impairment in PAH iPSC-ECs, which underlies increased susceptibility upon e-cig exposure. Moreover, knockdown of Akt3 in healthy iPSC-ECs significantly induced autophagic flux impairment and endothelial dysfunction, which further increased with e-cig treatment, thus mimicking the PAH cell phenotype after e-cig exposure. In addition, functional disruption of mTORC2 by knocking down Rictor in PAH iPSC-ECs caused autophagic flux impairment, which was mediated by downregulation of Akt3. Finally, pharmacological induction of autophagy via direct inhibition of mTORC1 and indirect activation of mTORC2 with rapamycin reverses e-cig-induced decreased Akt3 expression, endothelial dysfunction, autophagic flux impairment, and decreased cell viability, and migration in PAH iPSC-ECs. Taken together, these data suggest a potential link between autophagy and Akt3-mediated increased susceptibility to e-cig in PAH.
Subject(s)
Electronic Nicotine Delivery Systems , Induced Pluripotent Stem Cells , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/metabolism , Endothelial Cells/metabolism , Autophagy , Induced Pluripotent Stem Cells/physiologyABSTRACT
Compact CRISPR/Cas9 systems that can be packaged into an adeno-associated virus (AAV) hold great promise for gene therapy. Unfortunately, currently available small Cas9 nucleases either display low activity or require a long protospacer adjacent motif (PAM) sequence, limiting their extensive applications. Here, we screened a panel of Cas9 nucleases and identified a small Cas9 ortholog from Staphylococcus auricularis (SauriCas9), which recognizes a simple NNGG PAM, displays high activity for genome editing, and is compact enough to be packaged into an AAV for genome editing. Moreover, the conversion of adenine and cytosine bases can be achieved by fusing SauriCas9 to the cytidine and adenine deaminase. Therefore, SauriCas9 holds great potential for both basic research and clinical applications.
Subject(s)
CRISPR-Associated Protein 9/metabolism , DNA/metabolism , Gene Editing/methods , Staphylococcus/enzymology , Amino Acid Sequence , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , DNA/chemistry , DNA/genetics , Dependovirus/genetics , HEK293 Cells , Humans , Nucleotide Motifs , Protein Engineering , Staphylococcus/genetics , Substrate SpecificityABSTRACT
Deregulation of mRNA translation engenders many human disorders, including obesity, neurodegenerative diseases, and cancer, and is associated with pathogen infections. The role of eIF4E-dependent translational control in macrophage inflammatory responses in vivo is largely unexplored. In this study, we investigated the involvement of the translation inhibitors eIF4E-binding proteins (4E-BPs) in the regulation of macrophage inflammatory responses in vitro and in vivo. We show that the lack of 4E-BPs exacerbates inflammatory polarization of bone marrow-derived macrophages and that 4E-BP-null adipose tissue macrophages display enhanced inflammatory gene expression following exposure to a high-fat diet (HFD). The exaggerated inflammatory response in HFD-fed 4E-BP-null mice coincides with significantly higher weight gain, higher Irf8 mRNA translation, and increased expression of IRF8 in adipose tissue compared with wild-type mice. Thus, 4E-BP-dependent translational control limits, in part, the proinflammatory response during HFD. These data underscore the activity of the 4E-BP-IRF8 axis as a paramount regulatory mechanism of proinflammatory responses in adipose tissue macrophages.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adipose Tissue/metabolism , Inflammation/genetics , Interferon Regulatory Factors/genetics , Macrophages/metabolism , Protein Biosynthesis/genetics , Animals , Bone Marrow/metabolism , Diet, High-Fat/methods , Eukaryotic Initiation Factor-4E/genetics , Gene Expression/genetics , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, KnockoutABSTRACT
BACKGROUND: Molecular targeted chemotherapies have been shown to significantly improve the outcomes of patients who have cancer, but they often cause cardiovascular side effects that limit their use and impair patients' quality of life. Cardiac dysfunction induced by these therapies, especially trastuzumab, shows a distinct cardiotoxic clinical phenotype in comparison to the cardiotoxicity induced by conventional chemotherapies. METHODS: We used the human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) platform to determine the underlying cellular mechanisms in trastuzumab-induced cardiac dysfunction. We assessed the effects of trastuzumab on structural and functional properties in iPSC-CMs from healthy individuals and performed RNA-sequencing to further examine the effect of trastuzumab on iPSC-CMs. We also generated human induced pluripotent stem cells from patients receiving trastuzumab and examined whether patients' phenotype could be recapitulated in vitro by using patient-specific iPSC-CMs. RESULTS: We found that clinically relevant doses of trastuzumab significantly impaired the contractile and calcium-handling properties of iPSC-CMs without inducing cardiomyocyte death or sarcomeric disorganization. RNA-sequencing and subsequent functional analysis revealed mitochondrial dysfunction and altered the cardiac energy metabolism pathway as primary causes of trastuzumab-induced cardiotoxic phenotype. Human iPSC-CMs generated from patients who received trastuzumab and experienced severe cardiac dysfunction were more vulnerable to trastuzumab treatment than iPSC-CMs generated from patients who did not experience cardiac dysfunction following trastuzumab therapy. It is important to note that metabolic modulation with AMP-activated protein kinase activators could avert the adverse effects induced by trastuzumab. CONCLUSIONS: Our results indicate that alterations in cellular metabolic pathways in cardiomyocytes could be a key mechanism underlying the development of cardiac dysfunction following trastuzumab therapy; therefore, targeting the altered metabolism may be a promising therapeutic approach for trastuzumab-induced cardiac dysfunction.
Subject(s)
Antineoplastic Agents, Immunological/toxicity , Breast Neoplasms/drug therapy , Heart Diseases/chemically induced , Induced Pluripotent Stem Cells/drug effects , Trastuzumab/toxicity , AMP-Activated Protein Kinases/metabolism , Calcium Signaling/drug effects , Cardiotoxicity , Case-Control Studies , Cell Line , Energy Metabolism/drug effects , Female , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Myocardial Contraction/drug effects , Phenotype , Risk Factors , Transcriptome/drug effectsABSTRACT
Patient-specific pluripotent stem cells (PSCs) can be generated via nuclear reprogramming by transcription factors (i.e., induced pluripotent stem cells, iPSCs) or by somatic cell nuclear transfer (SCNT). However, abnormalities and preclinical application of differentiated cells generated by different reprogramming mechanisms have yet to be evaluated. Here we investigated the molecular and functional features, and drug response of cardiomyocytes (PSC-CMs) and endothelial cells (PSC-ECs) derived from genetically relevant sets of human iPSCs, SCNT-derived embryonic stem cells (nt-ESCs), as well as in vitro fertilization embryo-derived ESCs (IVF-ESCs). We found that differentiated cells derived from isogenic iPSCs and nt-ESCs showed comparable lineage gene expression, cellular heterogeneity, physiological properties, and metabolic functions. Genome-wide transcriptome and DNA methylome analysis indicated that iPSC derivatives (iPSC-CMs and iPSC-ECs) were more similar to isogenic nt-ESC counterparts than those derived from IVF-ESCs. Although iPSCs and nt-ESCs shared the same nuclear DNA and yet carried different sources of mitochondrial DNA, CMs derived from iPSC and nt-ESCs could both recapitulate doxorubicin-induced cardiotoxicity and exhibited insignificant differences on reactive oxygen species generation in response to stress condition. We conclude that molecular and functional characteristics of differentiated cells from human PSCs are primarily attributed to the genetic compositions rather than the reprogramming mechanisms (SCNT vs. iPSCs). Therefore, human iPSCs can replace nt-ESCs as alternatives for generating patient-specific differentiated cells for disease modeling and preclinical drug testing.
Subject(s)
Cell Differentiation , DNA Methylation , Endothelial Cells/metabolism , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Nuclear Transfer Techniques , Endothelial Cells/cytology , Genome-Wide Association Study , Human Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytologyABSTRACT
Duchenne muscular dystrophy (DMD) is an incurable X-linked genetic disease that is caused by a mutation in the dystrophin gene and affects one in every 3,600 boys. We previously showed that long telomeres protect mice from the lethal cardiac disease seen in humans with the same genetic defect, dystrophin deficiency. By generating the mdx4cv/mTRG2 mouse model with "humanized" telomere lengths, the devastating dilated cardiomyopathy phenotype seen in patients with DMD was recapitulated. Here, we analyze the degenerative sequelae that culminate in heart failure and death in this mouse model. We report progressive telomere shortening in developing mouse cardiomyocytes after postnatal week 1, a time when the cells are no longer dividing. This proliferation-independent telomere shortening is accompanied by an induction of a DNA damage response, evident by p53 activation and increased expression of its target gene p21 in isolated cardiomyocytes. The consequent repression of Pgc1α/ß leads to impaired mitochondrial biogenesis, which, in conjunction with the high demands of contraction, leads to increased oxidative stress and decreased mitochondrial membrane potential. As a result, cardiomyocyte respiration and ATP output are severely compromised. Importantly, treatment with a mitochondrial-specific antioxidant before the onset of cardiac dysfunction rescues the metabolic defects. These findings provide evidence for a link between short telomere length and metabolic compromise in the etiology of dilated cardiomyopathy in DMD and identify a window of opportunity for preventive interventions.
Subject(s)
Cardiomyopathy, Dilated , Muscular Dystrophy, Animal , Myocytes, Cardiac/physiology , Telomere Shortening , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Cell Cycle , Cell Proliferation , DNA Damage , Male , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/metabolism , Mitochondria, Heart/physiology , Mitosis , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne , Reactive Oxygen Species/metabolismABSTRACT
Both human embryonic stem cell-derived cardiomyocytes (ESC-CMs) and human induced pluripotent stem cell-derived CMs (iPSC-CMs) can serve as unlimited cell sources for cardiac regenerative therapy. However, the functional equivalency between human ESC-CMs and iPSC-CMs for cardiac regenerative therapy has not been demonstrated. Here, we performed a head-to-head comparison of ESC-CMs and iPSC-CMs in their ability to restore cardiac function in a rat myocardial infarction (MI) model as well as their exosomal secretome. Human ESCs and iPSCs were differentiated into CMs using small molecule inhibitors. Fluorescence-activated cell sorting analysis confirmed â¼85% and â¼83% of CMs differentiated from ESCs and iPSCs, respectively, were positive for cardiac troponin T. At a single-cell level, both cell types displayed similar calcium handling and electrophysiological properties, with gene expression comparable with the human fetal heart marked by striated sarcomeres. Sub-acute transplantation of ESC-CMs and iPSC-CMs into nude rats post-MI improved cardiac function, which was associated with increased expression of angiogenic genes in vitro following hypoxia. Profiling of exosomal microRNAs (miRs) and long non-coding RNAs (lncRNAs) revealed that both groups contain an identical repertoire of miRs and lncRNAs, including some that are known to be cardioprotective. We demonstrate that both ESC-CMs and iPSC-CMs can facilitate comparable cardiac repair. This is advantageous because, unlike allogeneic ESC-CMs used in therapy, autologous iPSC-CMs could potentially avoid immune rejection when used for cardiac cell transplantation in the future. Stem Cells 2017;35:2138-2149.
Subject(s)
Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Cell Differentiation , Cells, Cultured , Exosomes , HumansABSTRACT
Mitochondrial health is critically dependent on the ability of mitochondria to undergo changes in mitochondrial morphology, a process which is regulated by mitochondrial shaping proteins. Mitochondria undergo fission to generate fragmented discrete organelles, a process which is mediated by the mitochondrial fission proteins (Drp1, hFIS1, Mff and MiD49/51), and is required for cell division, and to remove damaged mitochondria by mitophagy. Mitochondria undergo fusion to form elongated interconnected networks, a process which is orchestrated by the mitochondrial fusion proteins (Mfn1, Mfn2 and OPA1), and which enables the replenishment of damaged mitochondrial DNA. In the adult heart, mitochondria are relatively static, are constrained in their movement, and are characteristically arranged into 3 distinct subpopulations based on their locality and function (subsarcolemmal, myofibrillar, and perinuclear). Although the mitochondria are arranged differently, emerging data supports a role for the mitochondrial shaping proteins in cardiac health and disease. Interestingly, in the adult heart, it appears that the pleiotropic effects of the mitochondrial fusion proteins, Mfn2 (endoplasmic reticulum-tethering, mitophagy) and OPA1 (cristae remodeling, regulation of apoptosis, and energy production) may play more important roles than their pro-fusion effects. In this review article, we provide an overview of the mitochondrial fusion and fission proteins in the adult heart, and highlight their roles as novel therapeutic targets for treating cardiac disease.
Subject(s)
Heart Diseases/metabolism , Heart Diseases/therapy , Mitochondria, Heart/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Myocardium/metabolism , Animals , Apoptosis , Energy Metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Humans , Mitochondria, Heart/pathology , Mitophagy , Myocardium/pathology , Necrosis , Signal TransductionABSTRACT
BACKGROUND: Human induced pluripotent stem cells (iPSCs) are attractive candidates for therapeutic use, with the potential to replace deficient cells and to improve functional recovery in injury or disease settings. Here, we test the hypothesis that human iPSC-derived cardiomyocytes (iPSC-CMs) can secrete cytokines as a molecular basis to attenuate adverse cardiac remodeling after myocardial infarction. METHODS AND RESULTS: Human iPSCs were generated from skin fibroblasts and differentiated in vitro with a small molecule-based protocol. Troponin(+) iPSC-CMs were confirmed by immunohistochemistry, quantitative polymerase chain reaction, fluorescence-activated cell sorting, and electrophysiological measurements. Afterward, 2×10(6) iPSC-CMs derived from a cell line transduced with a vector expressing firefly luciferase and green fluorescent protein were transplanted into adult NOD/SCID mice with acute left anterior descending artery ligation. Control animals received PBS injection. Bioluminescence imaging showed limited engraftment on transplantation into ischemic myocardium. However, magnetic resonance imaging of animals transplanted with iPSC-CMs showed significant functional improvement and attenuated cardiac remodeling compared with PBS-treated control animals. To understand the underlying molecular mechanism, microfluidic single-cell profiling of harvested iPSC-CMs, laser capture microdissection of host myocardium, and in vitro ischemia stimulation were used to demonstrate that the iPSC-CMs could release significant levels of proangiogenic and antiapoptotic factors in the ischemic microenvironment. CONCLUSIONS: Transplantation of human iPSC-CMs into an acute mouse myocardial infarction model can improve left ventricular function and attenuate cardiac remodeling. Because of limited engraftment, most of the effects are possibly explained by paracrine activity of these cells.
Subject(s)
Induced Pluripotent Stem Cells/physiology , Microfluidics/methods , Myocardial Infarction/therapy , Myocytes, Cardiac/physiology , Single-Cell Analysis/methods , Stem Cell Transplantation , Animals , Cell Line , Female , Humans , Induced Pluripotent Stem Cells/transplantation , Mice , Mice, Inbred NOD , Mice, SCID , Myocardial Infarction/pathology , Random AllocationABSTRACT
AIMS: High-fat diet-induced obesity (DIO) is a major contributor to type II diabetes and micro- and macro-vascular complications leading to peripheral vascular disease (PVD). Metabolic abnormalities of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from obese individuals could potentially limit their therapeutic efficacy for PVD. The aim of this study was to compare the function of iPSC-ECs from normal and DIO mice using comprehensive in vitro and in vivo assays. METHODS AND RESULTS: Six-week-old C57Bl/6 mice were fed with a normal or high-fat diet. At 24 weeks, iPSCs were generated from tail tip fibroblasts and differentiated into iPSC-ECs using a directed monolayer approach. In vitro functional analysis revealed that iPSC-ECs from DIO mice had significantly decreased capacity to form capillary-like networks, diminished migration, and lower proliferation. Microarray and ELISA confirmed elevated apoptotic, inflammatory, and oxidative stress pathways in DIO iPSC-ECs. Following hindlimb ischaemia, mice receiving intramuscular injections of DIO iPSC-ECs had significantly decreased reperfusion compared with mice injected with control healthy iPSC-ECs. Hindlimb sections revealed increased muscle atrophy and presence of inflammatory cells in mice receiving DIO iPSC-ECs. When pravastatin was co-administered to mice receiving DIO iPSC-ECs, a significant increase in reperfusion was observed; however, this beneficial effect was blunted by co-administration of the nitric oxide synthase inhibitor, N(ω)-nitro-l-arginine methyl ester. CONCLUSION: This is the first study to provide evidence that iPSC-ECs from DIO mice exhibit signs of endothelial dysfunction and have suboptimal efficacy following transplantation in a hindlimb ischaemia model. These findings may have important implications for future treatment of PVD using iPSC-ECs in the obese population.
Subject(s)
Endothelial Cells/physiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Induced Pluripotent Stem Cells/physiology , Nitric Oxide/physiology , Obesity/physiopathology , Pravastatin/pharmacology , Analysis of Variance , Animals , Apoptosis/physiology , Cell Differentiation , Diet, High-Fat , Enzyme Inhibitors/pharmacology , Fibroblasts/physiology , Hindlimb/blood supply , Injections, Intramuscular , Ischemia/physiopathology , Ischemia/prevention & control , Mice, Inbred C57BL , Muscle, Skeletal , Muscular Diseases/prevention & control , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/physiology , Proto-Oncogene Proteins c-akt/metabolism , Random Allocation , Reperfusion Injury/physiopathology , Signal TransductionABSTRACT
BACKGROUND: Despite the promise shown by stem cells for restoration of cardiac function after myocardial infarction, the poor survival of transplanted cells has been a major issue. Hypoxia-inducible factor-1 (HIF1) is a transcription factor that mediates adaptive responses to ischemia. Here, we hypothesize that codelivery of cardiac progenitor cells (CPCs) with a nonviral minicircle plasmid carrying HIF1 (MC-HIF1) into the ischemic myocardium can improve the survival of transplanted CPCs. METHODS AND RESULTS: After myocardial infarction, CPCs were codelivered intramyocardially into adult NOD/SCID mice with saline, MC-green fluorescent protein, or MC-HIF1 versus MC-HIF1 alone (n=10 per group). Bioluminescence imaging demonstrated better survival when CPCs were codelivered with MC-HIF1. Importantly, echocardiography showed mice injected with CPCs+MC-HIF1 had the highest ejection fraction 6 weeks after myocardial infarction (57.1±2.6%; P=0.002) followed by MC-HIF1 alone (48.5±2.6%; P=0.04), with no significant protection for CPCs+MC-green fluorescent protein (44.8±3.3%; P=NS) when compared with saline control (38.7±3.2%). In vitro mechanistic studies confirmed that cardiac endothelial cells produced exosomes that were actively internalized by recipient CPCs. Exosomes purified from endothelial cells overexpressing HIF1 had higher contents of miR-126 and miR-210. These microRNAs activated prosurvival kinases and induced a glycolytic switch in recipient CPCs, giving them increased tolerance when subjected to in vitro hypoxic stress. Inhibiting both of these miRs blocked the protective effects of the exosomes. CONCLUSIONS: In summary, HIF1 can be used to modulate the host microenvironment for improving survival of transplanted cells. The exosomal transfer of miRs from host cells to transplanted cells represents a unique mechanism that can be potentially targeted for improving survival of transplanted cells.
Subject(s)
Adult Stem Cells/transplantation , Exosomes , Genetic Therapy , Hypoxia-Inducible Factor 1, alpha Subunit/therapeutic use , MicroRNAs/therapeutic use , Multipotent Stem Cells/transplantation , Myocardial Infarction/therapy , Myocardial Ischemia/therapy , Animals , Cell Communication , Cellular Microenvironment , Combined Modality Therapy , Culture Media, Conditioned , DNA, Circular , Female , Genetic Vectors/therapeutic use , Graft Survival , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/surgery , Myocardial Ischemia/genetics , Myocardial Ischemia/surgery , Neovascularization, Physiologic , Plasmids , Random Allocation , TransfectionABSTRACT
De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRß)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis by downregulating PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.
Subject(s)
Adipocytes, Brown , Adipogenesis , Cell Differentiation , Receptor, Platelet-Derived Growth Factor beta , Receptors, Notch , Stem Cells , Animals , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, Notch/metabolism , Mice , Adipocytes, Brown/metabolism , Adipocytes, Brown/cytology , Stem Cells/metabolism , Stem Cells/cytology , Signal Transduction , Pericytes/metabolism , Pericytes/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/cytology , Mice, Inbred C57BL , MaleABSTRACT
There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.
Subject(s)
Adipose Tissue, White , Chemokine CCL22 , Energy Metabolism , Lymph Nodes , Macrophages , Thermogenesis , Animals , Female , Humans , Male , Mice , Adipocytes, Beige/metabolism , Adipose Tissue, White/metabolism , Chemokine CCL22/metabolism , Eosinophils/metabolism , Lymph Nodes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Receptors, CCR4/metabolism , Signal TransductionABSTRACT
Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase 2 (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart, predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knockout mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.
Subject(s)
Atrial Fibrillation , Mice, Knockout , Myocytes, Cardiac , NADPH Oxidase 2 , Obesity , NADPH Oxidase 2/genetics , NADPH Oxidase 2/metabolism , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/etiology , Atrial Fibrillation/enzymology , Animals , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Mice , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/enzymology , Reactive Oxygen Species/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Induced Pluripotent Stem Cells/metabolism , Male , Oxidative Stress , Atrial RemodelingABSTRACT
Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages that they offer are compromised with aging. Here we show that treating mice with estrogen (E2), a hormone that decreases with age, can counteract the age-related decline in beige adipogenesis when exposed to cold temperature while concurrently enhancing energy expenditure and improving glucose tolerance in mice. Mechanistically, we found that nicotinamide phosphoribosyl transferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related endoplasmic reticulum (ER) stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. Together, our findings shed light on the mechanisms regulating the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT-controlled ER stress pathway as a key regulator of this process.