ABSTRACT
INTRODUCTION: Patients with chronic obstructive pulmonary disease (COPD) commonly experience severe dyspnea after discontinuation of nocturnal noninvasive ventilation (NIV), known as deventilation syndrome (DVS), which negatively affects quality of life. Despite various hypotheses, the precise mechanisms of DVS remain unknown. METHODS: An observational pilot study was performed monitoring 16 stable COPD patients before, during, and after an afternoon nap on NIV. Seven patients experienced DVS (Borg Dyspnea Scale ≥5), while nine served as controls (Borg Dyspnea Scale ≤2). Hyperinflation was evaluated through inspiratory capacity (IC) measurements and end-expiratory lung impedance (EELI) via electrical impedance tomography. Respiratory muscle activity was assessed by diaphragmatic surface electromyography (sEMG). RESULTS: Post-NIV dyspnea scores were significantly higher in the DVS group (5 [3-7] vs. 0 [0-1.5], p < 0.001). IC values were lower in the DVS group compared to controls, both pre-NIV (54 [41-63] vs. 88 [72-94] %pred., p = 0.006) and post-NIV (45 [40-59] vs. 76 [65-82] %pred., p = 0.005), while no intergroup difference was seen in IC changes pre- and post-NIV. EELI values after NIV indicated a tendency towards lower values in controls and higher values in DVS patients. sEMG amplitudes were higher in the DVS group within the first 5-min post-NIV (221 [112-294] vs. 100 [58-177]% of baseline, p = 0.030). CONCLUSION: This study suggests that it is unlikely that DVS originates from the inability to create diaphragmatic muscle activity after NIV. Instead, NIV-induced hyperinflation in individuals with static hyperinflation may play a significant role. Addressing hyperinflation holds promise in preventing DVS symptoms in COPD patients.
ABSTRACT
BACKGROUND: The patient's neuro-respiratory drive, measured as electrical activity of the diaphragm (EAdi), quantifies the mechanical load on the respiratory muscles. It correlates with respiratory effort but requires a dedicated esophageal catheter. Transcutaneous (surface) monitoring of respiratory muscle electromyographic (sEMG) signals may be considered a suitable alternative to EAdi because of its non-invasive character, with the additional benefit that it allows for simultaneously monitoring of other respiratory muscles. We therefore sought to study the neuro-respiratory drive and timing of inspiratory muscles using sEMG in a cohort of children enrolled in a pediatric ventilation liberation trial. The neuro-mechanical coupling, relating the pressure generated by the inspiratory muscles to the sEMG signals of these muscles, was also calculated. METHODS: This is a secondary analysis of data from a randomized cross-over trial in ventilated patients aged < 5 years. sEMG recordings of the diaphragm and parasternal intercostal muscles (ICM), esophageal pressure tracings and ventilator scalars were simultaneously recorded during continuous spontaneous ventilation and pressure controlled-intermittent mandatory ventilation, and at three levels of pressure support. Neuro-respiratory drive, timing of diaphragm and ICM relative to the mechanical ventilator's inspiration and neuro-mechanical coupling were quantified. RESULTS: Twenty-nine patients were included (median age: 5.9 months). In response to decreasing pressure support, both amplitude of sEMG (diaphragm: p = 0.001 and ICM: p = 0.002) and neuro-mechanical efficiency indices increased (diaphragm: p = 0.05 and ICM: p < 0.001). Poor correlations between neuro-respiratory drive and respiratory effort were found, with R2: 0.088 [0.021-0.152]. CONCLUSIONS: sEMG allows for the quantification of the electrical activity of the diaphragm and ICM in mechanically ventilated children. Both neuro-respiratory drive and neuro-mechanical efficiency increased in response to lower inspiratory assistance. There was poor correlation between neuro-respiratory drive and respiratory effort. TRIAL REGISTRATION: ClinicalTrials.gov ID NCT05254691. Registered 24 February 2022, registered retrospectively.
Subject(s)
Positive-Pressure Respiration , Respiration, Artificial , Humans , Child , Infant , Electromyography , Retrospective Studies , Diaphragm/physiologyABSTRACT
Smartwatches that support the recording of a single-lead electrocardiogram (ECG) are increasingly being used beyond the wrist, by placement on the ankle and on the chest. However, the reliability of frontal and precordial ECGs other than lead I is unknown. This clinical validation study assessed the reliability of an Apple Watch (AW) to obtain conventional frontal and precordial leads as compared to standard 12-lead ECGs in both subjects without known cardiac anomalies and patients with underlying heart disease. In 200 subjects (67% with ECG anomalies), a standard 12-lead ECG was performed, followed by AW recordings of the standard Einthoven leads (leads I, II, and III) and precordial leads V1, V3, and V6. Seven parameters (P, QRS, ST, and T-wave amplitudes, PR, QRS, and QT intervals) were compared through a Bland-Altman analysis, including the bias, absolute offset, and 95% limits of agreement. AW-ECGs recorded on the wrist but also beyond the wrist had similar durations and amplitudes compared to standard 12-lead ECGs. Significantly greater amplitudes were measured by the AW for R-waves in precordial leads V1, V3, and V6 (+0.094 mV, +0.149 mV, +0.129 mV, respectively, all p < 0.001), indicating a positive bias for the AW. AW can be used to record frontal, and precordial ECG leads, paving the way for broader clinical applications.
Subject(s)
Electrocardiography , Heart Diseases , Humans , Reproducibility of Results , Arrhythmias, Cardiac , ThoraxABSTRACT
BACKGROUND: Expiratory muscle weakness leads to difficult ventilator weaning. Maintaining their activity with functional electrical stimulation (FES) may improve outcome. We studied feasibility of breath-synchronized expiratory population muscle FES in a mixed ICU population ("Holland study") and pooled data with our previous work ("Australian study") to estimate potential clinical effects in a larger group. METHODS: Holland: Patients with a contractile response to FES received active or sham expiratory muscle FES (30 min, twice daily, 5 days/week until weaned). Main endpoints were feasibility (e.g., patient recruitment, treatment compliance, stimulation intensity) and safety. Pooled: Data on respiratory muscle thickness and ventilation duration from the Holland and Australian studies were combined (N = 40) in order to estimate potential effect size. Plasma cytokines (day 0, 3) were analyzed to study the effects of FES on systemic inflammation. RESULTS: Holland: A total of 272 sessions were performed (active/sham: 169/103) in 20 patients (N = active/sham: 10/10) with a total treatment compliance rate of 91.1%. No FES-related serious adverse events were reported. Pooled: On day 3, there was a between-group difference (N = active/sham: 7/12) in total abdominal expiratory muscle thickness favoring the active group [treatment difference (95% confidence interval); 2.25 (0.34, 4.16) mm, P = 0.02] but not on day 5. Plasma cytokine levels indicated that early FES did not induce systemic inflammation. Using a survival analysis approach for the total study population, median ventilation duration and ICU length of stay were 10 versus 52 (P = 0.07), and 12 versus 54 (P = 0.03) days for the active versus sham group. Median ventilation duration of patients that were successfully extubated was 8.5 [5.6-12.2] versus 10.5 [5.3-25.6] days (P = 0.60) for the active (N = 16) versus sham (N = 10) group, and median ICU length of stay was 10.5 [8.0-14.5] versus 14.0 [9.0-19.5] days (P = 0.36) for those active (N = 16) versus sham (N = 8) patients that were extubated and discharged alive from the ICU. During ICU stay, 3/20 patients died in the active group versus 8/20 in the sham group (P = 0.16). CONCLUSION: Expiratory muscle FES is feasible in selected ICU patients and might be a promising technique within a respiratory muscle-protective ventilation strategy. The next step is to study the effects on weaning and ventilator liberation outcome. TRIAL REGISTRATION: ClinicalTrials.gov, ID NCT03453944. Registered 05 March 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03453944 .
Subject(s)
Electric Stimulation/methods , Respiratory Muscles/innervation , Aged , Aged, 80 and over , Cohort Studies , Electric Stimulation/instrumentation , Feasibility Studies , Female , Hospital Mortality/trends , Humans , Male , Medicare/statistics & numerical data , Medicare/trends , Proportional Hazards Models , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Respiratory Muscles/physiopathology , Retrospective Studies , United StatesABSTRACT
RATIONALE: Multiple mechanisms are involved in the pathogenesis of obstructive sleep apnea (OSA). Elevated loop gain is a key target for precision OSA care and may be associated with treatment intolerance when the upper airway is the sole therapeutic target. Morphological or computational estimation of LG is not yet widely available or fully validated - there is a need for improved phenotyping/endotyping of apnea to advance its therapy and prognosis. OBJECTIVES: This study proposes a new algorithm to assess self-similarity as a signature of elevated loop gain using respiratory effort signals and presents its use to predict the probability of acute failure (high residual event counts) of continuous positive airway pressure (CPAP) therapy. METHODS: Effort signals from 2145 split-night polysomnography studies from the Massachusetts General Hospital were analyzed for SS and used to predict acute CPAP therapy effectiveness. Logistic regression models were trained and evaluated using 5-fold cross-validation. RESULTS: Receiver operating characteristic (ROC) and precision-recall (PR) curves with AUC values of 0.82 and 0.84, respectively, were obtained. Self-similarity combined with the central apnea index (CAI) and hypoxic burden outperformed CAI alone. Even in those with a low CAI by conventional scoring criteria or only mild desaturation, SS was related to poor therapy outcomes. CONCLUSIONS: The proposed algorithm for assessing SS as a measure of expressed high loop gain is accurate, non-invasive, and has the potential to improve phenotyping/endotyping of apnea, leading to more precise sleep apnea treatment strategies.
ABSTRACT
In an effort to reduce the complications related to invasive ventilation, the use of noninvasive ventilation (NIV) has increased over the last years in patients with acute respiratory failure. However, failure rates for NIV remain high in specific patient categories. Several studies have identified factors that contribute to NIV failure, including low experience of the medical team and patient-ventilator asynchrony. An important difference between invasive ventilation and NIV is the role of the upper airway. During invasive ventilation the endotracheal tube bypasses the upper airway, but during NIV upper airway patency may play a role in the successful application of NIV. In response to positive pressure, upper airway patency may decrease and therefore impair minute ventilation. This paper aims to discuss the effect of positive pressure ventilation on upper airway patency and its possible clinical implications, and to stimulate research in this field.
Subject(s)
Noninvasive Ventilation , Positive-Pressure Respiration , Respiratory Insufficiency/therapy , Respiratory Physiological Phenomena , Acute Disease , Animals , Humans , Man-Machine Systems , Pulmonary Stretch Receptors/physiology , Respiratory Insufficiency/physiopathology , Respiratory Muscles/physiology , Respiratory System/anatomy & histologyABSTRACT
STUDY OBJECTIVES: Sleep-disordered breathing is a significant risk factor for cardiometabolic and neurodegenerative diseases. High loop gain (HLG) is a driving mechanism of central sleep apnea or periodic breathing. This study presents a computational approach that identifies "expressed/manifest" HLG via a cyclical self-similarity feature in effort-based respiration signals. METHODS: Working under the assumption that HLG increases the risk of residual central respiratory events during continuous positive airway pressure (CPAP), the full night similarity, computed during diagnostic non-CPAP polysomnography (PSG), was used to predict residual central events during CPAP (REC), which we defined as central apnea index (CAI) higher than 10. Central apnea labels are obtained both from manual scoring by sleep technologists and from an automated algorithm developed for this study. The Massachusetts General Hospital sleep database was used, including 2466 PSG pairs of diagnostic and CPAP titration PSG recordings. RESULTS: Diagnostic CAI based on technologist labels predicted REC with an area under the curve (AUC) of 0.82 ± 0.03. Based on automatically generated labels, the combination of full night similarity and automatically generated CAI resulted in an AUC of 0.85 ± 0.02. A subanalysis was performed on a population with technologist-labeled diagnostic CAI higher than 5. Full night similarity predicted REC with an AUC of 0.57 ± 0.07 for manual and 0.65 ± 0.06 for automated labels. CONCLUSIONS: The proposed self-similarity feature, as a surrogate estimate of expressed respiratory HLG and computed from easily accessible effort signals, can detect periodic breathing regardless of admixed obstructive features such as flow limitation and can aid the prediction of REC.
Subject(s)
Continuous Positive Airway Pressure , Sleep Apnea, Obstructive , Algorithms , Humans , Massachusetts , Polysomnography , Sleep Apnea, Obstructive/diagnosisABSTRACT
BACKGROUND: Patient-ventilator synchrony in patients with COPD is at risk during noninvasive ventilation (NIV). NIV in neurally-adjusted ventilatory assist (NAVA) mode improves synchrony compared to pressure support ventilation (PSV). The current study investigated patient-ventilator interaction at 2 levels of NAVA and PSV mode in subjects with COPD exacerbation. METHODS: NIV was randomly applied at 2 levels (5 and 15 cm H2O) of PSV and NAVA. Patient-ventilator interaction was evaluated by comparing airway pressure and electrical activity of the diaphragm waveforms with automated computer algorithms. RESULTS: 8 subjects were included. Trigger delay was longer in PSV high (268 ± 112 ms) than in PSV low (161 ± 118 ms, P = .043), and trigger delay during NAVA was shorter than PSV for both low support (49 ± 24 ms for NAVA, P = .035) and high support (79 ± 276 ms for NAVA, P = .003). No difference in cycling error for low and high levels of PSV (PSV low -100 ± 114 ms and PSV high 56 ± 315 ms) or NAVA (NAVA low -5 ± 18 ms, NAVA high 12 ± 36 ms) and no difference between PSV and NAVA was found. CONCLUSIONS: Increasing PSV levels during NIV caused a progressive mismatch between neural effort and pneumatic timing. Patient-ventilator interaction during NAVA was more synchronous than during PSV, independent of inspiratory support level. (ClinicalTrials.gov registration NCT01791335.).
Subject(s)
Interactive Ventilatory Support , Noninvasive Ventilation , Pulmonary Disease, Chronic Obstructive , Humans , Positive-Pressure Respiration , Pulmonary Disease, Chronic Obstructive/therapy , Ventilators, MechanicalABSTRACT
With a modified circuit, it is feasible to ventilate two patients with one ventilator over a relevant range of compliances. Adding inspiratory resistance allows individual titration of tidal volume, and incorporating one-way valves prevents pendelluft. https://bit.ly/3ex8SYP.
ABSTRACT
BACKGROUND: Non-invasive ventilation (NIV) provides ventilatory support for patients with respiratory failure. However, the glottis can act as a closing valve, limiting effectiveness of NIV. This study investigates the patency of the glottis during NIV in patients with acute exacerbation of Chronic Obstructive Pulmonary Disease (COPD). METHODS: Electrical activity of the diaphragm, flow, pressure and videolaryngoscopy were acquired. NIV was randomly applied in pressure support (PSV) and neurally adjusted ventilatory assist (NAVA) mode with two levels of support. The angle formed by the vocal cords represented glottis patency. RESULTS: Eight COPD patients with acute exacerbation requiring NIV were included. No differences were found in median glottis angle during inspiration or peak inspiratory effort between PSV and NAVA at low and high support levels. CONCLUSIONS: The present study showed that glottis patency during inspiration in patients with an acute exacerbation of COPD is not affected by mode (PSV or NAVA) or level of assist (5 or 15 cm H2O) during NIV.
Subject(s)
Glottis/pathology , Glottis/physiology , Noninvasive Ventilation/methods , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/therapy , Aged , Diaphragm/physiopathology , Female , Humans , Laryngoscopy , Male , Middle Aged , Statistics, Nonparametric , Videodisc RecordingABSTRACT
Assessment of diaphragmatic effort is challenging, especially in critically ill patients in the phase of weaning. Fractional thickening during inspiration assessed by ultrasound has been used to estimate diaphragm effort. It is unknown whether more sophisticated ultrasound techniques such as speckle tracking are superior in the quantification of inspiratory effort. This study evaluates the validity of speckle tracking ultrasound to quantify diaphragm contractility. Thirteen healthy volunteers underwent a randomized stepwise threshold loading protocol of 0-50% of the maximal inspiratory pressure. Electric activity of the diaphragm and transdiaphragmatic pressures were recorded. Speckle tracking ultrasound was used to assess strain and strain rate as measures of diaphragm tissue deformation and deformation velocity, respectively. Fractional thickening was assessed by measurement of diaphragm thickness at end-inspiration and end-expiration. Strain and strain rate increased with progressive loading of the diaphragm. Both strain and strain rate were highly correlated to transdiaphragmatic pressure (strain r2 = 0.72; strain rate r2 = 0.80) and diaphragm electric activity (strain r2 = 0.60; strain rate r2 = 0.66). We conclude that speckle tracking ultrasound is superior to conventional ultrasound techniques to estimate diaphragm contractility under inspiratory threshold loading.NEW & NOTEWORTHY Transdiaphragmatic pressure using esophageal and gastric balloons is the gold standard to assess diaphragm effort. However, this technique is invasive and requires expertise, and the interpretation may be complex. We report that speckle tracking ultrasound can be used to detect stepwise increases in diaphragmatic effort. Strain and strain rate were highly correlated with transdiaphragmatic pressure, and therefore, diaphragm electric activity and speckle tracking might serve as reliable tools to quantify diaphragm effort in the future.
Subject(s)
Diaphragm/diagnostic imaging , Diaphragm/physiology , Inhalation , Muscle Contraction , Ultrasonography/methods , Biomechanical Phenomena , Female , Healthy Volunteers , Humans , Male , Predictive Value of Tests , Pressure , Reproducibility of Results , Stress, Mechanical , Time Factors , Young AdultABSTRACT
STUDY OBJECTIVE: Positional therapy (PT) is an effective therapy in positional obstructive sleep apnea syndrome (POSAS) when used, but the compliance of PT is low. The objective of this study was to investigate whether a new kind of PT is effective and can improve compliance. METHODS: 29 patients were treated with the Sleep Position Trainer (SPT), 26 patients with the Tennis Ball Technique (TBT). At baseline and 1 month polysomnography, Epworth Sleepiness Scale (ESS) and the Quebec Sleep Questionnaire (QSQ) were taken. Daily compliance was objectively measured in both groups. RESULTS: Both therapies prevent supine sleep position to a median of 0% (min-max: SPT 0.0% to 67%, TBT 0.0% to 38.9%), resulting in a treatment success (AHI <5) in 68.0% of the SPT and 42.9% of the TBT patients. The ESS at baseline was <10 in both groups. Sleep quality parameters as wake after sleep onset (WASO; p = 0.001) and awakenings (p = 0.006) improved more in the SPT group. Total QSQ scores (0.4±0.2, p = 0.03) and the QSQ domains nocturnal symptoms (0.7±0.2, p = 0.01) and social interactions (0.8±0.3, p = 0.02) changed in favor of the SPT group. Effective compliance (≥4 h/night + ≥5 days/week) was 75.9% for the SPT and 42.3% for the TBT users (p = 0.01). CONCLUSION: In mild POSAS with normal EES the new SPT device and the standard TBT are equally effective in reducing respiratory indices. However, compared to the TBT, sleep quality, quality of life, and compliance improved significantly more in the SPT group.