Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cancers (Basel) ; 14(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35159022

ABSTRACT

It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.

2.
Oncogene ; 38(7): 1136-1150, 2019 02.
Article in English | MEDLINE | ID: mdl-30237440

ABSTRACT

Elucidation of mechanisms underlying the increased androgen receptor (AR) activity and subsequent development of aggressive prostate cancer (PrCa) is pivotal in developing new therapies. Using a systems biology approach, we interrogated the AR-regulated proteome and identified PDZ binding kinase (PBK) as a novel AR-regulated protein that regulates full-length AR and AR variants (ARVs) activity in PrCa. PBK overexpression in aggressive PrCa is associated with early biochemical relapse and poor clinical outcome. In addition to its carboxy terminus ligand-binding domain, PBK directly interacts with the amino terminus transactivation domain of the AR to stabilise it thereby leading to increased AR protein expression observed in PrCa. Transcriptome sequencing revealed that PBK is a mediator of global AR signalling with key roles in regulating tumour invasion and metastasis. PBK inhibition decreased growth of PrCa cell lines and clinical specimen cultured ex vivo. We uncovered a novel interplay between AR and PBK that results in increased AR and ARVs expression that executes AR-mediated growth and progression of PrCa, with implications for the development of PBK inhibitors for the treatment of aggressive PrCa.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Signal Transduction , Cell Line, Tumor , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Male , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/genetics , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Receptors, Androgen/genetics
3.
J Natl Cancer Inst ; 108(5)2016 May.
Article in English | MEDLINE | ID: mdl-26657335

ABSTRACT

BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Choline Kinase/metabolism , Molecular Chaperones , Molecular Targeted Therapy/methods , Prostatectomy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Receptors, Androgen/metabolism , Signal Transduction , Aged , Animals , Choline Kinase/antagonists & inhibitors , Choline Kinase/genetics , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasm Grading , Neoplasm Staging , Proportional Hazards Models , Prostatectomy/methods , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Sequence Analysis, DNA , Xenograft Model Antitumor Assays
4.
Future Sci OA ; 1(2): FSO47, 2015 Sep.
Article in English | MEDLINE | ID: mdl-28031874

ABSTRACT

The androgen receptor (AR), a ligand activated transcription factor plays a number of roles in reproduction, homeostasis and pathogenesis of disease. It has two major polymorphic sequences; a polyglutamine and a polyglycine repeat that determine the length of the protein and influence receptor folding, structure and function. Here, we review the role the folding of the AR plays in the pathogenesis of spinal-bulbar muscular atrophy (SBMA), a neuromuscular degenerative disease arising from expansion of the polyglutamine repeat. We discuss current management for SBMA patients and how research on AR structure function may lead to future drug treatments.

SELECTION OF CITATIONS
SEARCH DETAIL