Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 601(7892): 252-256, 2022 01.
Article in English | MEDLINE | ID: mdl-34912116

ABSTRACT

Microbial genes encode the majority of the functional repertoire of life on earth. However, despite increasing efforts in metagenomic sequencing of various habitats1-3, little is known about the distribution of genes across the global biosphere, with implications for human and planetary health. Here we constructed a non-redundant gene catalogue of 303 million species-level genes (clustered at 95% nucleotide identity) from 13,174 publicly available metagenomes across 14 major habitats and use it to show that most genes are specific to a single habitat. The small fraction of genes found in multiple habitats is enriched in antibiotic-resistance genes and markers for mobile genetic elements. By further clustering these species-level genes into 32 million protein families, we observed that a small fraction of these families contain the majority of the genes (0.6% of families account for 50% of the genes). The majority of species-level genes and protein families are rare. Furthermore, species-level genes, and in particular the rare ones, show low rates of positive (adaptive) selection, supporting a model in which most genetic variability observed within each protein family is neutral or nearly neutral.


Subject(s)
Metagenome , Metagenomics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Ecosystem , Humans , Metagenome/genetics
2.
Nucleic Acids Res ; 52(D1): D777-D783, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897342

ABSTRACT

Meta'omic data on microbial diversity and function accrue exponentially in public repositories, but derived information is often siloed according to data type, study or sampled microbial environment. Here we present SPIRE, a Searchable Planetary-scale mIcrobiome REsource that integrates various consistently processed metagenome-derived microbial data modalities across habitats, geography and phylogeny. SPIRE encompasses 99 146 metagenomic samples from 739 studies covering a wide array of microbial environments and augmented with manually-curated contextual data. Across a total metagenomic assembly of 16 Tbp, SPIRE comprises 35 billion predicted protein sequences and 1.16 million newly constructed metagenome-assembled genomes (MAGs) of medium or high quality. Beyond mapping to the high-quality genome reference provided by proGenomes3 (http://progenomes.embl.de), these novel MAGs form 92 134 novel species-level clusters, the majority of which are unclassified at species level using current tools. SPIRE enables taxonomic profiling of these species clusters via an updated, custom mOTUs database (https://motu-tool.org/) and includes several layers of functional annotation, as well as crosslinks to several (micro-)biological databases. The resource is accessible, searchable and browsable via http://spire.embl.de.


Subject(s)
Databases, Factual , Metagenome , Microbiota , Metagenomics , Microbiota/genetics
3.
Nucleic Acids Res ; 50(6): 3155-3168, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35323968

ABSTRACT

Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.


Subject(s)
Bacteria , Bacteriophages , Bacteria/genetics , Bacteriophages/genetics , DNA Transposable Elements/genetics , Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal , Phylogeny , Recombinases/genetics
4.
Gut ; 71(7): 1359-1372, 2022 07.
Article in English | MEDLINE | ID: mdl-35260444

ABSTRACT

BACKGROUND: Recent evidence suggests a role for the microbiome in pancreatic ductal adenocarcinoma (PDAC) aetiology and progression. OBJECTIVE: To explore the faecal and salivary microbiota as potential diagnostic biomarkers. METHODS: We applied shotgun metagenomic and 16S rRNA amplicon sequencing to samples from a Spanish case-control study (n=136), including 57 cases, 50 controls, and 29 patients with chronic pancreatitis in the discovery phase, and from a German case-control study (n=76), in the validation phase. RESULTS: Faecal metagenomic classifiers performed much better than saliva-based classifiers and identified patients with PDAC with an accuracy of up to 0.84 area under the receiver operating characteristic curve (AUROC) based on a set of 27 microbial species, with consistent accuracy across early and late disease stages. Performance further improved to up to 0.94 AUROC when we combined our microbiome-based predictions with serum levels of carbohydrate antigen (CA) 19-9, the only current non-invasive, Food and Drug Administration approved, low specificity PDAC diagnostic biomarker. Furthermore, a microbiota-based classification model confined to PDAC-enriched species was highly disease-specific when validated against 25 publicly available metagenomic study populations for various health conditions (n=5792). Both microbiome-based models had a high prediction accuracy on a German validation population (n=76). Several faecal PDAC marker species were detectable in pancreatic tumour and non-tumour tissue using 16S rRNA sequencing and fluorescence in situ hybridisation. CONCLUSION: Taken together, our results indicate that non-invasive, robust and specific faecal microbiota-based screening for the early detection of PDAC is feasible.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Biomarkers, Tumor , CA-19-9 Antigen , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Case-Control Studies , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , RNA, Ribosomal, 16S/genetics , Pancreatic Neoplasms
5.
Nucleic Acids Res ; 48(D1): D621-D625, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31647096

ABSTRACT

Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/.


Subject(s)
Databases, Genetic , Genome, Archaeal , Genome, Bacterial , Genomics , Computational Biology/methods , Ecosystem , Internet , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Prokaryotic Cells , Reproducibility of Results , Software
6.
Bioinformatics ; 34(8): 1404-1405, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29211828

ABSTRACT

Motivation: Functional and taxonomic analyses are critical steps in understanding interspecific interactions within microbial communities. Currently, such analyses are run separately, which complicates interpretation of results. Here we present the ASAR interactive tool for simultaneous analysis of metagenomic data in three dimensions: taxonomy, function, metagenome. Results: An interactive data analysis tool for selection, aggregation and visualization of metagenomic data is presented. Functional analysis with a SEED hierarchy and pathway diagram based on KEGG orthology based upon MG-RAST annotation results is available. Availability and implementation: Source code of the ASAR is accessible at GitHub (https://github.com/Askarbek-orakov/ASAR). Contact: askarbek.orakov@nu.edu.kz or goryanin@gmail.com.


Subject(s)
Metagenomics/methods , Microbiota/genetics , Software
7.
Nat Med ; 28(9): 1902-1912, 2022 09.
Article in English | MEDLINE | ID: mdl-36109636

ABSTRACT

Fecal microbiota transplantation (FMT) is a therapeutic intervention for inflammatory diseases of the gastrointestinal tract, but its clinical mode of action and subsequent microbiome dynamics remain poorly understood. Here we analyzed metagenomes from 316 FMTs, sampled pre and post intervention, for the treatment of ten different disease indications. We quantified strain-level dynamics of 1,089 microbial species, complemented by 47,548 newly constructed metagenome-assembled genomes. Donor strain colonization and recipient strain resilience were mostly independent of clinical outcomes, but accurately predictable using LASSO-regularized regression models that accounted for host, microbiome and procedural variables. Recipient factors and donor-recipient complementarity, encompassing entire microbial communities to individual strains, were the main determinants of strain population dynamics, providing insights into the underlying processes that shape the post-FMT gut microbiome. Applying an ecology-based framework to our findings indicated parameters that may inform the development of more effective, targeted microbiome therapies in the future, and suggested how patient stratification can be used to enhance donor microbiota colonization or the displacement of recipient microbes in clinical practice.


Subject(s)
Clostridium Infections , Gastrointestinal Microbiome , Microbiota , Clostridium Infections/therapy , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract , Humans
8.
Genome Biol ; 22(1): 178, 2021 06 13.
Article in English | MEDLINE | ID: mdl-34120611

ABSTRACT

Genomes are critical units in microbiology, yet ascertaining quality in prokaryotic genome assemblies remains a formidable challenge. We present GUNC (the Genome UNClutterer), a tool that accurately detects and quantifies genome chimerism based on the lineage homogeneity of individual contigs using a genome's full complement of genes. GUNC complements existing approaches by targeting previously underdetected types of contamination: we conservatively estimate that 5.7% of genomes in GenBank, 5.2% in RefSeq, and 15-30% of pre-filtered "high-quality" metagenome-assembled genomes in recent studies are undetected chimeras. GUNC provides a fast and robust tool to substantially improve prokaryotic genome quality.


Subject(s)
Chimerism , Computational Biology/methods , Genome, Bacterial , Metagenome , Proteobacteria/genetics , Software , Contig Mapping , Metagenomics/methods , Phylogeny , Prokaryotic Cells/cytology , Prokaryotic Cells/metabolism
9.
J Cancer ; 8(5): 903-912, 2017.
Article in English | MEDLINE | ID: mdl-28382154

ABSTRACT

Receptor tyrosine kinase EGFR usually is localized on plasma membrane to induce progression of many cancers including cancers in children (Bodey et al. In Vivo. 2005, 19:931-41), but it contains a nuclear localization signal (NLS) that mediates EGFR nuclear translocation (Lin et al. Nat Cell Biol. 2001, 3:802-8). Here we report that NLS of EGFR has its old evolutionary origin. Protein-protein interaction maps suggests that nEGFR pathways are different from membrane EGFR and EGF is not found in nEGFR network while androgen receptor (AR) is found, which suggests the evolution of prostate cancer, a well-known AR driven cancer, through changes in androgen- or EGF-dependence. Database analysis suggests that nEGFR correlates with the tumor grades especially in prostate cancer patients. Structural predication analysis suggests that NLS can compromise the differential protein binding to EGFR through stretch linkers with evolutionary mutation from N to V. In experiment, elevation of nEGFR but not membrane EGFR was found in castration resistant prostate cancer cells. Finally, systems analysis of NLS and transmembrane domain (TM) suggests that NLS has old origin while NLS neighboring domain of TM has been undergone accelerated evolution. Thus nEGFR has an old origin resembling the cancer evolution but TM may interfere with NLS driven signaling for natural selection of survival to evade NLS induced aggressive cancers. Our data suggest NLS is a dynamic inducer of EGFR oncogenesis during evolution for advanced cancers. Our model provides novel insights into the evolutionary role of NLS of oncogenic kinases in cancers.

10.
Cell Death Discov ; 3: 17036, 2017.
Article in English | MEDLINE | ID: mdl-28811933

ABSTRACT

Matrix metalloproteinase (MMP) is defined as an endopeptidase in the extracellular matrix (ECM), which plays essential roles in physiological processes such as organogenesis, wound healing, angiogenesis, apoptosis and motility. MMPs are produced and assembled in the cytoplasm as proenzymes with a cytoplasmic domain and require extracellular activation. MMPs can degrade receptors, extracellular matrix proteins, PARPs and release apoptotic substances. MMPs have been found in the cytosol, organelles and extracellular compartments and recently many types of MMPs have been found in the nucleus. However, the mechanisms and roles of MMPs inside the cell nucleus are still poorly understood. Here we summarized the nuclear localization mechanisms of MMPs and their functions in the nucleus such as apoptosis, tissue remodeling upon injury and cancer progression. Most importantly, we found that nuclear MMPs have evolved to translocate to membrane and target ECM possibly through evolution of nuclear localization signal (NLS), natural selection and anti-apoptotic survival. Thus, the knowledge about the evolution and regulation of nuclear MMPs appears to be essential in understanding a variety of cellular processes along with the development of MMP-targeted therapeutic drugs against the progression of certain diseases.

SELECTION OF CITATIONS
SEARCH DETAIL