Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Plant Cell Environ ; 46(4): 1278-1294, 2023 04.
Article in English | MEDLINE | ID: mdl-35698268

ABSTRACT

Glycerolipids are essential for rice development and grain quality but its genetic regulation remains unknown. Here we report its genetic base using metabolite-based genome-wide association study and metabolite-based quantitative traits locus (QTL) analyses based on lipidomic profiles of seeds from 587 Asian cultivated rice accessions and 103 chromosomal segment substitution lines, respectively. We found that two genes encoding phosphatidylcholine (PC):diacylglycerol cholinephosphotransferase (OsLP1) and granule-bound starch synthase I (Waxy) contribute to variations in saturated triacylglycerol (TAG) and lyso-PC contents, respectively. We demonstrated that allelic variation in OsLP1 sequence between indica and japonica results in different enzymatic preference for substrate PC-16:0/16:0 and different saturated TAG levels. Further evidence demonstrated that OsLP1 also affects heading date, and that co-selection of OsLP1 and a flooding-tolerant QTL in Aus results in the abundance of saturated TAGs associated with flooding tolerance. Moreover, we revealed that the sequence polymorphisms in Waxy has pleiotropic effects on lyso-PC and amylose content. We proposed that rice seed glycerolipids have been unintentionally shaped during natural and artificial selection for adaptive or import seed quality traits. Collectively, our findings provide valuable genetic resources for rice improvement and evolutionary insights into seed glycerolipid variations in rice.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Phenotype , Seeds/genetics
2.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292941

ABSTRACT

Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Arabidopsis/genetics , Arabidopsis/metabolism , Transcriptome , Glucosinolates/metabolism , Gene Expression Regulation, Plant , Plant Diseases/genetics , Pseudomonas syringae/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Indoles/pharmacology , Indoles/metabolism , Arginine/metabolism , Disease Resistance/genetics , Salicylic Acid/metabolism
3.
New Phytol ; 225(2): 754-768, 2020 01.
Article in English | MEDLINE | ID: mdl-31489634

ABSTRACT

Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23°C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88%) but not in respiration (sustaining rates of 3.0-4.2 µmol CO2  m-2  s-1 ) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature.


Subject(s)
Caryophyllaceae/physiology , Cold Temperature , Cytochromes/metabolism , Stress, Physiological , Sulfur/metabolism , Antarctic Regions , Antioxidants/metabolism , Carbon/metabolism , Cell Respiration , Geography , Glutathione/metabolism , Models, Biological , Oxidation-Reduction , Photosynthesis , Plant Proteins/metabolism , Solubility , Species Specificity
4.
Plant Cell Environ ; 43(6): 1376-1393, 2020 06.
Article in English | MEDLINE | ID: mdl-32012308

ABSTRACT

The species Deschampsia antarctica (DA) is one of the only two native vascular species that live in Antarctica. We performed ecophysiological, biochemical, and metabolomic studies to investigate the responses of DA to low temperature. In parallel, we assessed the responses in a non-Antarctic reference species (Triticum aestivum [TA]) from the same family (Poaceae). At low temperature (4°C), both species showed lower photosynthetic rates (reductions were 70% and 80% for DA and TA, respectively) and symptoms of oxidative stress but opposite responses of antioxidant enzymes (peroxidases and catalase). We employed fused least absolute shrinkage and selection operator statistical modelling to associate the species-dependent physiological and antioxidant responses to primary metabolism. Model results for DA indicated associations with osmoprotection, cell wall remodelling, membrane stabilization, and antioxidant secondary metabolism (synthesis of flavonols and phenylpropanoids), coordinated with nutrient mobilization from source to sink tissues (confirmed by elemental analysis), which were not observed in TA. The metabolic behaviour of DA, with significant changes in particular metabolites, was compared with a newly compiled multispecies dataset showing a general accumulation of metabolites in response to low temperatures. Altogether, the responses displayed by DA suggest a compromise between catabolism and maintenance of leaf functionality.


Subject(s)
Adaptation, Physiological , Cold Temperature , Nitrogen/metabolism , Phosphorus/metabolism , Poaceae/metabolism , Antarctic Regions , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Carbon/metabolism , Catalase/metabolism , Cell Respiration , Cell Wall/metabolism , Glutathione/metabolism , Metabolomics , Oxidation-Reduction , Photosynthesis , Solubility , Species Specificity , Sulfur/metabolism
5.
Plant Cell Physiol ; 57(10): 2232-2243, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27638927

ABSTRACT

Acclimation to low CO2 conditions in cyanobacteria involves the co-ordinated regulation of genes mainly encoding components of the carbon-concentrating mechanism (CCM). Making use of several independent microarray data sets, a core set of CO2-regulated genes was defined for the model strain Synechocystis sp. PCC 6803. On the transcriptional level, the CCM is mainly regulated by the well-characterized transcriptional regulators NdhR (= CcmR) and CmpR. However, the role of an additional regulatory protein, namely cyAbrB2 belonging to the widely distributed AbrB regulator family that was originally characterized in the genus Bacillus, is less defined. Here we present results of transcriptomic and metabolic profiling of the wild type and a ΔcyabrB2 mutant of Synechocystis sp. PCC 6803 after shifts from high CO2 (5% in air, HC) to low CO2 (0.04%, LC). Evaluation of the transcriptomic data revealed that cyAbrB2 is involved in the regulation of several CCM-related genes such as sbtA/B, ndhF3/ndhD3/cupA and cmpABCD under LC conditions, but apparently acts supplementary to NdhR and CmpR. Under HC conditions, cyAbrB2 deletion affects the transcript abundance of PSII subunits, light-harvesting components and Calvin-Benson-Bassham cycle enzymes. These changes are also reflected by down-regulation of primary metabolite pools. The data suggest a role for cyAbrB2 in adjusting primary carbon and nitrogen metabolism to photosynthetic activity under fluctuating environmental conditions. The findings were integrated into the current knowledge about the acquisition of inorganic carbon (Ci), the CCM and parts of its regulation on the transcriptional level.


Subject(s)
Acclimatization/drug effects , Bacterial Proteins/metabolism , Carbon Dioxide/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Synechocystis/physiology , Transcription, Genetic/drug effects , Bacterial Proteins/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Genes, Bacterial , Inorganic Chemicals/pharmacology , Metabolome/drug effects , Metabolome/genetics , Mutation/genetics , Open Reading Frames/genetics , Photosystem II Protein Complex/metabolism , Synechocystis/drug effects , Synechocystis/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
6.
Plant Physiol ; 169(3): 1787-806, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26373660

ABSTRACT

Cyanobacteria have efficient carbon concentration mechanisms and suppress photorespiration in response to inorganic carbon (Ci) limitation. We studied intracellular Ci limitation in the slow-growing CO2/HCO3 (-)-uptake mutant ΔndhD3 (for NADH dehydrogenase subunit D3)/ndhD4 (for NADH dehydrogenase subunit D4)/cmpA (for bicarbonate transport system substrate-binding protein A)/sbtA (for sodium-dependent bicarbonate transporter A): Δ4 mutant of Synechocystis sp. PCC 6803. When cultivated under high-CO2 conditions, ∆4 phenocopies wild-type metabolic and transcriptomic acclimation responses after the shift from high to low CO2 supply. The ∆4 phenocopy reveals multiple compensation mechanisms and differs from the preacclimation of the transcriptional Ci regulator mutant ∆ndhR (for ndhF3 operon transcriptional regulator). Contrary to the carboxysomeless ∆ccmM (for carbon dioxide concentrating mechanism protein M) mutant, the metabolic photorespiratory burst triggered by shifting to low CO2 is not enhanced in ∆4. However, levels of the photorespiratory intermediates 2-phosphoglycolate and glycine are increased under high CO2. The number of carboxysomes is increased in ∆4 under high-CO2 conditions and appears to be the major contributing factor for the avoidance of photorespiration under intracellular Ci limitation. The ∆4 phenocopy is associated with the deregulation of Ci control, an overreduced cellular state, and limited photooxidative stress. Our data suggest multiple layers of Ci regulation, including inversely regulated modules of antisense RNAs and cognate target messenger RNAs and specific trans-acting small RNAs, such as the posttranscriptional PHOTOSYNTHESIS REGULATORY RNA1 (PsrR1), which shows increased expression in ∆4 and is involved in repressing many photosynthesis genes at the posttranscriptional level. In conclusion, our insights extend the knowledge on the range of compensatory responses of Synechocystis sp. PCC 6803 to intracellular Ci limitation and may become a valuable reference for improving biofuel production in cyanobacteria, in which Ci is channeled off from central metabolism and may thus become a limiting factor.


Subject(s)
Bicarbonates/metabolism , Carbon Dioxide/metabolism , Gene Expression Regulation, Bacterial , Metabolome , Synechocystis/metabolism , Transcriptome , Acclimatization , Biological Transport , Mutation , Nitrogen/metabolism , Operon/genetics , Photosynthesis , RNA, Antisense/genetics , RNA, Small Interfering/genetics , Synechocystis/genetics , Synechocystis/ultrastructure
7.
Plant Physiol ; 169(3): 1540-56, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25630438

ABSTRACT

The acquisition and assimilation of inorganic carbon (Ci) represents the largest flux of inorganic matter in photosynthetic organisms; hence, this process is tightly regulated. We examined the Ci-dependent transcriptional and metabolic regulation in wild-type Synechocystis sp. PCC 6803 compared with a mutant defective in the main transcriptional repressor for Ci acquisition genes, the NAD(P)H dehydrogenase transcriptional regulator NdhR. The analysis revealed that many protein-coding transcripts that are normally repressed in the presence of high CO2 (HC) concentrations were strongly expressed in ∆ndhR, whereas other messenger RNAs were strongly down-regulated in mutant cells, suggesting a potential activating role for NdhR. A conserved NdhR-binding motif was identified in the promoters of derepressed genes. Interestingly, the expression of some NdhR-regulated genes remained further inducible under low-CO2 conditions, indicating the involvement of additional NdhR-independent Ci-regulatory mechanisms. Intriguingly, we also observed that the abundance of 52 antisense RNAs and 34 potential noncoding RNAs was affected by Ci supply, although most of these molecules were not regulated through NdhR. Thus, antisense and noncoding RNAs could contribute to NdhR-independent carbon regulation. In contrast to the transcriptome, the metabolome in ∆ndhR cells was similar to that of wild-type cells under HC conditions. This observation and the delayed metabolic responses to the low-CO2 shift in ∆ndhR, specifically the lack of transient increases in the photorespiratory pathway intermediates 2-phosphoglycolate, glycolate, and glycine, suggest that the deregulation of gene expression in the ΔndhR mutant successfully preacclimates cyanobacterial cells to lowered Ci supply under HC conditions.


Subject(s)
Bacterial Proteins/metabolism , Carbon/metabolism , Metabolomics , Synechocystis/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/physiology , Mutation , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synechocystis/genetics , Transcriptome
8.
J Exp Bot ; 67(10): 2941-52, 2016 05.
Article in English | MEDLINE | ID: mdl-26969741

ABSTRACT

Photorespiration is a process that is crucial for the survival of oxygenic phototrophs in environments that favour the oxygenation reaction of Rubisco. While photorespiration is conserved among cyanobacteria, algae, and embryophytes, it evolved to different levels of complexity in these phyla. The highest complexity is found in embryophytes, where the pathway involves four cellular compartments and respective transport processes. The complexity of photorespiration in embryophytes raises the question whether a simpler system, such as cyanobacteria, may serve as a model to facilitate our understanding of the common key aspects of photorespiration. In this study, we conducted a meta-analysis of publicly available metabolite profiles from the embryophyte Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 grown under conditions that either activate or suppress photorespiration. The comparative meta-analysis evaluated the similarity of metabolite profiles, the variability of metabolite pools, and the patterns of metabolite ratios. Our results show that the metabolic signature of photorespiration is in part conserved between the compared model organisms under conditions that favour the oxygenation reaction. Therefore, our findings support the claim that cyanobacteria can serve as prokaryotic models of photorespiration in embryophytes.


Subject(s)
Cyanobacteria/metabolism , Photosynthesis/physiology , Plants/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Cyanobacteria/physiology , Embryophyta/metabolism , Embryophyta/physiology , Metabolome/physiology , Models, Biological , Plant Physiological Phenomena
9.
Environ Microbiol ; 17(5): 1794-804, 2015 May.
Article in English | MEDLINE | ID: mdl-25297829

ABSTRACT

Cyanobacteria possess CO2 -concentrating mechanisms (CCM) that functionally compensate for the poor affinity of their ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to CO2 . It was proposed that 2-phosphoglycolate (2PG), produced by the oxygenase activity of Rubisco and metabolized via photorespiratory routes, serves as a signal molecule for the induction of CCM-related genes under limiting CO2 level (LC) conditions. However, in vivo evidence is still missing. Since 2PG does not permeate the cells, we manipulated its internal concentration. Four putative phosphoglycolate phosphatases (PGPases) encoding genes (slr0458, sll1349, slr0586 and slr1762) were identified in the cyanobacterium Synechocystis PCC 6803. Expression of slr0458 in Escherichia coli led to a significant rise in PGPase activity. A Synechocystis mutant overexpressing (OE) slr0458 was constructed. Compared with the wild type (WT), the mutant grew slower under limiting CO2 concentration and the intracellular 2PG level was considerably smaller than in the wild type, the transcript abundance of LC-induced genes including cmpA, sbtA and ndhF3 was reduced, and the OE cells acclimated slower to LC - indicated by the delayed rise in the apparent photosynthetic affinity to inorganic carbon. Data obtained here implicated 2PG in the acclimation of this cyanobacterium to LC but also indicated that other, yet to be identified components, are involved.


Subject(s)
Carbon Dioxide/metabolism , Glycolates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Synechocystis/metabolism , Acclimatization/genetics , Amino Acid Sequence , Carbon/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/drug effects , Mutation , Oxidation-Reduction , Phosphoric Monoester Hydrolases/biosynthesis , Phosphoric Monoester Hydrolases/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Alignment , Signal Transduction , Synechocystis/enzymology , Synechocystis/genetics
10.
Plant Sci ; 333: 111748, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37230189

ABSTRACT

In the last decades, linkage mapping has help in the location of metabolite quantitative trait loci (QTL) in many species; however, this approach shows some limitations. Recently, thanks to the most recent advanced in high-throughput genotyping technologies like next-generation sequencing, metabolite genome-wide association study (mGWAS) has been proposed a powerful tool to identify the genetic variants in polygenic agrinomic traits. Fruit flavor is a complex interaction of aroma volatiles and taste being sugar and acid ratio key parameter for flavor acceptance. Here, we review recent progress of mGWAS in pinpoint gene polymorphisms related to flavor-related metabolites in fruits. Despite clear successes in discovering novel genes or regions associated with metabolite accumulation affecting sensory attributes in fruits, GWAS incurs in several limitations summarized in this review. In addition, in our own work, we performed mGWAS on 194 Citrus grandis accessions to investigate the genetic control of individual primary and lipid metabolites in ripe fruit. We have identified a total of 667 associations for 14 primary metabolites including amino acids, sugars, and organic acids, and 768 associations corresponding to 47 lipids. Furthermore, candidate genes related to important metabolites related to fruit quality such as sugars, organic acids and lipids were discovered.


Subject(s)
Fruit , Genome-Wide Association Study , Fruit/metabolism , Chromosome Mapping , Sugars/metabolism , Lipids/analysis
11.
Methods Mol Biol ; 2156: 203-239, 2020.
Article in English | MEDLINE | ID: mdl-32607984

ABSTRACT

This book chapter describes the analytical procedures required for the profiling of a metabolite fraction enriched for primary metabolites. The profiling is based on routine gas chromatography coupled to mass spectrometry (GC-MS). The generic profiling method is adapted to plant material, specifically to the analysis of plant material that was exposed to temperature stress. The method can be combined with stable isotope labeling and tracing experiments and is equally applicable to preparations of plant material and microbial photosynthetic organisms. The described methods are modular and can be multiplexed, that is, the same sample or a paired identical backup sample can be analyzed sequentially by more than one of the described procedures. The modules include rapid sampling and metabolic inactivation protocols for samples in a wide weight range, sample extraction procedures, chemical derivatization steps that are required to make the metabolite fraction amenable to gas chromatographic analysis, routine GC-MS methods, and procedures of data processing and data mining. A basic and extendable set of standardizations for metabolite recovery and retention index alignment of the resulting GC-MS chromatograms is included. The methods have two applications: (1) The rapid screening for changes of relative metabolite pools sizes under temperature stress and (2) the verification by exact quantification using GC-MS protocols that are extended by internal and external standardization.


Subject(s)
Gas Chromatography-Mass Spectrometry , Metabolome , Metabolomics , Plant Physiological Phenomena , Plants/metabolism , Temperature , Data Analysis , Gas Chromatography-Mass Spectrometry/methods , Isotope Labeling , Metabolomics/methods , Phenotype , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Clin Transl Gastroenterol ; 11(9): e00239, 2020 09.
Article in English | MEDLINE | ID: mdl-33094960

ABSTRACT

INTRODUCTION: Liver cirrhosis and its complication - hepatocellular carcinoma (HCC) - have been associated with increased exhaled limonene. It is currently unclear whether this increase is more strongly associated with the presence of HCC or with the severity of liver dysfunction. METHODS: We compared the exhaled breath of 40 controls, 32 cirrhotic patients, and 12 cirrhotic patients with HCC using the Breath Biopsy platform. Breath samples were analyzed by thermal desorption-gas chromatography-mass spectrometry. Limonene levels were compared between the groups and correlated to bilirubin, albumin, prothrombin time international normalized ratio, and alanine aminotransferase. RESULTS: Breath limonene concentration was significantly elevated in subjects with cirrhosis-induced HCC (M: 82.1 ng/L, interquartile range [IQR]: 16.33-199.32 ng/L) and cirrhosis (M: 32.6 ng/L, IQR: 6.55-123.07 ng/L) compared with controls (M: 6.2 ng/L, IQR: 2.62-9.57 ng/L) (P value = 0.0005 and 0.0001, respectively) with no significant difference between 2 diseased groups (P value = 0.37). Levels of exhaled limonene correlated with serum bilirubin (R = 0.25, P value = 0.0016, r = 0.51), albumin (R = 0.58, P value = 5.3e-8, r = -0.76), and international normalized ratio (R = 0.29, P value = 0.0003, r = 0.51), but not with alanine aminotransferase (R = 0.01, P value = 0.36, r = 0.19). DISCUSSION: Exhaled limonene levels are primarily affected by the presence of cirrhosis through reduced liver functional capacity, as indicated by limonene correlation with blood metrics of impaired hepatic clearance and protein synthesis capacity, without further alterations observed in subjects with HCC. This suggests that exhaled limonene is a potential non-invasive marker of liver metabolic capacity (see Visual abstract, Supplementary Digital Content 1, http://links.lww.com/CTG/A388).


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Limonene/analysis , Liver Cirrhosis/diagnosis , Liver Neoplasms/diagnosis , Volatile Organic Compounds/analysis , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Breath Tests , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/physiopathology , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Liver/pathology , Liver/physiopathology , Liver Cirrhosis/pathology , Liver Cirrhosis/physiopathology , Liver Function Tests/methods , Liver Neoplasms/pathology , Liver Neoplasms/physiopathology , Male , Middle Aged , Prospective Studies , Severity of Illness Index
13.
Methods Mol Biol ; 1778: 311-319, 2018.
Article in English | MEDLINE | ID: mdl-29761448

ABSTRACT

As part of a systems biology approach, metabolomics often aim at broadening our understanding of the functionality of biological systems as a whole. Observations from stand-alone experiments may reveal interesting changes in metabolites of a specific pathway or metabolite class. However, bringing these observations into context with more general biological processes requires the integration and comparison of different datasets. This chapter aims at introducing and explaining methods of comparative data analysis for plant metabolomics using the statistical software framework R.


Subject(s)
Systems Biology/methods , Software
14.
Front Plant Sci ; 9: 1292, 2018.
Article in English | MEDLINE | ID: mdl-30233628

ABSTRACT

The temperate climax tree species Fagus sylvatica and the floodplain tree species Populus × canescens possess contrasting phosphorus (P) nutrition strategies. While F. sylvatica has been documented to display P storage and mobilization (Netzer et al., 2017), this was not observed for Populus × canescens (Netzer et al., 2018b). Nevertheless, changes in the abundance of organic bound P in gray poplar trees indicated adaptation of the P nutrition to different needs during annual growth. The present study aimed at characterizing seasonal changes in metabolite and lipid abundances in gray poplar and uncovering differences in metabolite requirement due to specific needs depending on the season. Seasonal variations in the abundance of (i) sugar-Ps and phospholipids, (ii) amino acids, (iii) sulfur compounds, and (iv) carbon metabolites were expected. It was hypothesized that seasonal changes in metabolite levels relate to N, S, and C storage and mobilization. Changes in organic metabolites binding Pi (Porg) are supposed to support these processes. Variation in triacylglycerols, in sugar-phosphates, in metabolites of the TCA cycle and in the amino acid abundance of poplar twig buds, leaves, bark, and wood were found to be linked to changes in metabolite abundances as well as to C, N, and S storage and mobilization processes. The observed changes support the view of a lack of any P storage in poplar. Yet, during dormancy, contents of phospholipids in twig bark and wood were highest probably due to frost-hardening and to its function in extra-plastidic membranes such as amyloplasts, oleosomes, and protein bodies. Consistent with this assumption, in spring sugar-Ps increased when phospholipids declined and poplar plants entering the vegetative growth period and, hence, metabolic activity increases. These results indicate that poplar trees adopt a policy of P nutrition without P storage and mobilization that is different from their N- and S-nutrition strategies.

15.
Plant Methods ; 13: 87, 2017.
Article in English | MEDLINE | ID: mdl-29075313

ABSTRACT

BACKGROUND: Conventional metabolomics approaches face the problem of hidden metabolic phenotypes where only fluxes are altered but pool sizes stay constant. Metabolic flux experiments are used to detect such hidden flux phenotypes. These experiments are, however, time consuming, may be cost intensive, and involve specialists for modeling. We fill the gap between conventional metabolomics and flux modeling. We present rapid stable isotope tracing assays and analysis strategies of 13C labeling data. For this purpose, we combine the conventional metabolomics approach that detects significant relative changes of metabolite pool sizes with analyses of differential utilization of 13C labeled carbon. As a test case, we use uniformly labeled 13C-sucrose. RESULTS: We present petiole and hypocotyl feeding assays for the rapid in situ feeding (≤ 4 h) of isotopically labeled metabolic precursor to whole Arabidopsis thaliana rosettes. The assays are assessed by conventional gas chromatography-mass spectrometry based metabolite profiling that was extended by joined differential analysis of 13C-labeled sub-pools and of 13C enrichment of metabolites relative to the enrichment of 13C-sucrose within each sample. We apply these analyses to the sink to source transition continuum of leaves from single A. thaliana rosettes and characterize the associated relative changes of metabolite pools, as well as previously hidden changes of sucrose-derived carbon partitioning. We compared the contribution of sucrose as a carbon source in predominantly sink to predominantly source leaves and identified a set of primary metabolites with differential carbon utilization during sink to source transition. CONCLUSION: The presented feeding assays and data evaluation strategies represent a rapid and easy-to-use tool box for enhanced metabolomics studies that combine differential pool size analysis with screening for differential carbon utilization from defined stable isotope labeled metabolic precursors.

16.
Curr Biol ; 27(16): 2559-2567.e3, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28803869

ABSTRACT

The factors rate-limiting growth of photosynthetic organisms under optimal conditions are controversial [1-8]. Adaptation to extreme environments is usually accompanied by reduced performance under optimal conditions [9, 10]. However, the green alga Chlorella ohadii, isolated from a harsh desert biological soil crust [11-17], does not obey this rule. In addition to resistance to photodamage [17, 18], it performs the fastest growth ever reported for photosynthetic eukaryotes. A multiphasic growth pattern (very fast growth [phase I], followed by growth retardation [phase II] and additional fast growth [phase III]) observed under constant illumination and temperature indicates synchronization of the algal population. Large physiological changes at transitions between growth phases suggest metabolic shifts. Indeed, metabolome analyses at points along the growth phases revealed large changes in the levels of many metabolites during growth with an overall rise during phase I and decline in phase II. Multivariate analysis of the metabolome data highlighted growth phase as the main factor contributing to observed metabolite variance. The analyses identified putrescine as the strongest predictive metabolite for growth phase and a putative growth regulator. Indeed, extracellular additions of polyamines strongly affected the growth rate in phase I and the growth arrest in phase II, with a marked effect on O2 exchange. Our data implicate polyamines as the signals harmonizing metabolic shifts and suggest that metabolic flexibility enables the immense growth capabilities of C. ohadii. The data provide a new dimension to current models focusing on growth-limiting processes in photosynthetic organisms where the anabolic and catabolic metabolisms must be strictly regulated.


Subject(s)
Adaptation, Biological , Chlorella/physiology , Desert Climate , Photosynthesis , Chlorella/growth & development , Metabolome , Soil
17.
Metabolites ; 4(2): 232-47, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24957024

ABSTRACT

Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis. Non-diazotrophic strains such as the model Synechocystis sp. PCC 6803 depend on a balanced uptake and assimilation of inorganic carbon and nitrogen sources. The internal C/N ratio is sensed via the PII protein (GlnB). We analyzed metabolic changes of the DglnB mutant of Synechocystis sp. PCC 6803 under different CO2 availability. The identified metabolites provided a snapshot of the central C/N metabolism. Cells of the DglnB mutant shifted to carbon-limiting conditions, i.e. a decreased C/N ratio, showed changes in intermediates of the sugar storage and particularly of the tricarboxylic acid cycle, arginine, and glutamate metabolism. The changes of the metabolome support the notion that the PII protein is primarily regulating the N-metabolism whereas the changes in C-metabolism are probably secondary effects of the PII deletion.

18.
Methods Mol Biol ; 1166: 171-97, 2014.
Article in English | MEDLINE | ID: mdl-24852636

ABSTRACT

This book chapter describes the analytical procedures required for the profiling of a metabolite fraction enriched for primary metabolites. The profiling is based on routine gas chromatography coupled to mass spectrometry (GC-MS). The generic profiling method is adapted to plant material, specifically to the analysis of single leaves from plants that were exposed to temperature stress experiments. The described method is modular. The modules include a rapid sampling and metabolic inactivation protocol for samples in a wide size range, a sample extraction procedure, a chemical derivatization step that is required to make the metabolite fraction amenable to gas chromatographic analysis, a routine GC-MS method, and finally the procedures of data processing and data mining. A basic and extendable set of standardizations for metabolite recovery and retention index alignment of the resulting GC-MS chromatograms is included. The method has two applications: (1) the rapid screening for changes of relative metabolite pools sizes under temperature stress and (2) the verification of cold-regulated metabolites by exact quantification using a GC-MS protocol with extended internal and external standardization.


Subject(s)
Cold Temperature , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Chloroform/chemistry , Gas Chromatography-Mass Spectrometry/standards , Metabolomics/standards , Methanol/chemistry , Plants/metabolism , Reference Standards
19.
Metabolites ; 3(1): 72-100, 2013 Feb 04.
Article in English | MEDLINE | ID: mdl-24957891

ABSTRACT

Our knowledge on cyanobacterial molecular biology increased tremendously by the application of the "omics" techniques. Only recently, metabolomics was applied systematically to model cyanobacteria. Metabolomics, the quantitative estimation of ideally the complete set of cellular metabolites, is particularly well suited to mirror cellular metabolism and its flexibility under diverse conditions. Traditionally, small sets of metabolites are quantified in targeted metabolome approaches. The development of separation technologies coupled to mass-spectroscopy- or nuclear-magnetic-resonance-based identification of low molecular mass molecules presently allows the profiling of hundreds of metabolites of diverse chemical nature. Metabolome analysis was applied to characterize changes in the cyanobacterial primary metabolism under diverse environmental conditions or in defined mutants. The resulting lists of metabolites and their steady state concentrations in combination with transcriptomics can be used in system biology approaches. The application of stable isotopes in fluxomics, i.e. the quantitative estimation of carbon and nitrogen fluxes through the biochemical network, has only rarely been applied to cyanobacteria, but particularly this technique will allow the making of kinetic models of cyanobacterial systems. The further application of metabolomics in the concert of other "omics" technologies will not only broaden our knowledge, but will also certainly strengthen the base for the biotechnological application of cyanobacteria.

SELECTION OF CITATIONS
SEARCH DETAIL