Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Article in English | MEDLINE | ID: mdl-37657463

ABSTRACT

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Subject(s)
Antineoplastic Agents , Glioblastoma , Glioma , Adult , Female , Humans , Male , Chemoradiotherapy , Genetic Therapy , Glioblastoma/genetics , Glioblastoma/therapy , Glioma/genetics , Glioma/therapy , Adolescent , Middle Aged , Aged
2.
Prostate ; 83(11): 1060-1067, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37154588

ABSTRACT

INTRODUCTION: Delay between targeted prostate biopsy (PB) and pathologic diagnosis can lead to a concern of inadequate sampling and repeated biopsy. Stimulated Raman histology (SRH) is a novel microscopic technique allowing real-time, label-free, high-resolution microscopic images of unprocessed, unsectioned tissue. This technology holds potential to decrease the time for PB diagnosis from days to minutes. We evaluated the concordance of pathologist interpretation of PB SRH as compared with traditional hematoxylin and eosin (H&E) stained slides. METHODS: Men undergoing prostatectomy were included in an IRB-approved prospective study. Ex vivo 18-gauge PB cores, taken from prostatectomy specimen, were scanned in an SRH microscope (NIO; Invenio Imaging) at 20 microns depth using two Raman shifts: 2845 and 2930 cm-1 , to create SRH images. The cores were then processed as per normal pathologic protocols. Sixteen PB containing a mix of benign and malignant histology were used as an SRH training cohort for four genitourinary pathologists, who were then tested on a set of 32 PBs imaged by SRH and processed by traditional H&E. Sensitivity, specificity, accuracy, and concordance for prostate cancer (PCa) detection on SRH relative to H&E were assessed. RESULTS: The mean pathologist accuracy for the identification of any PCa on PB SRH was 95.7%. In identifying any PCa or ISUP grade group 2-5 PCa, a pathologist was independently able to achieve good and very good concordance (κ: 0.769 and 0.845, respectively; p < 0.001). After individual assessment was completed a pathology consensus conference was held for the interpretation of the PB SRH; after the consensus conference the pathologists' concordance in identifying any PCa was also very good (κ: 0.925, p < 0.001; sensitivity 95.6%; specificity 100%). CONCLUSION: SRH produces high-quality microscopic images that allow for accurate identification of PCa in real-time without need for sectioning or tissue processing. The pathologist performance improved through progressive training, showing that ultimately high accuracy can be obtained. Ongoing SRH evaluation in the diagnostic and treatment setting hold promise to reduce time to tissue diagnosis, while interpretation by convolutional neural network may further improve diagnostic characteristics and broaden use.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Prospective Studies , Biopsy , Prostatic Neoplasms/pathology , Prostatectomy
3.
Br J Cancer ; 129(10): 1658-1666, 2023 11.
Article in English | MEDLINE | ID: mdl-37717120

ABSTRACT

BACKGROUND: A rapid, low-cost blood test that can be applied to reliably detect multiple different cancer types would be transformational. METHODS: In this large-scale discovery study (n = 2092 patients) we applied the Dxcover® Cancer Liquid Biopsy to examine eight different cancers. The test uses Fourier transform infrared (FTIR) spectroscopy and machine-learning algorithms to detect cancer. RESULTS: Area under the receiver operating characteristic curve (ROC) values were calculated for eight cancer types versus symptomatic non-cancer controls: brain (0.90), breast (0.76), colorectal (0.91), kidney (0.91), lung (0.91), ovarian (0.86), pancreatic (0.84) and prostate (0.86). We assessed the test performance when all eight cancer types were pooled to classify 'any cancer' against non-cancer patients. The cancer versus asymptomatic non-cancer classification detected 64% of Stage I cancers when specificity was 99% (overall sensitivity 57%). When tuned for higher sensitivity, this model identified 99% of Stage I cancers (with specificity 59%). CONCLUSIONS: This spectroscopic blood test can effectively detect early-stage disease and can be fine-tuned to maximise either sensitivity or specificity depending on the requirements from different healthcare systems and cancer diagnostic pathways. This low-cost strategy could facilitate the requisite earlier diagnosis, when cancer treatment can be more effective, or less toxic. STATEMENT OF TRANSLATIONAL RELEVANCE: The earlier diagnosis of cancer is of paramount importance to improve patient survival. Current liquid biopsies are mainly focused on single tumour-derived biomarkers, which limits test sensitivity, especially for early-stage cancers that do not shed enough genetic material. This pan-omic liquid biopsy analyses the full complement of tumour and immune-derived markers present within blood derivatives and could facilitate the earlier detection of multiple cancer types. There is a low barrier to integrating this blood test into existing diagnostic pathways since the technology is rapid, simple to use, only minute sample volumes are required, and sample preparation is minimal. In addition, the spectroscopic liquid biopsy described in this study has the potential to be combined with other orthogonal tests, such as cell-free DNA, which could provide an efficient route to diagnosis. Cancer treatment can be more effective when given earlier, and this low-cost strategy has the potential to improve patient prognosis.


Subject(s)
Prostatic Neoplasms , Male , Female , Humans , Prostatic Neoplasms/pathology , ROC Curve , Prostate/pathology , Biomarkers, Tumor/genetics , Spectrum Analysis , Liquid Biopsy
4.
Mod Pathol ; 36(9): 100219, 2023 09.
Article in English | MEDLINE | ID: mdl-37201685

ABSTRACT

Stimulated Raman histology (SRH) is an ex vivo optical imaging method that enables microscopic examination of fresh tissue intraoperatively. The conventional intraoperative method uses frozen section analysis, which is labor and time intensive, introduces artifacts that limit diagnostic accuracy, and consumes tissue. SRH imaging allows rapid microscopic imaging of fresh tissue, avoids tissue loss, and enables remote telepathology review. This improves access to expert neuropathology consultation in both low- and high-resource practices. We clinically validated SRH by performing a blinded, retrospective two-arm telepathology study to clinically validate SRH for telepathology at our institution. Using surgical specimens from 47 subjects, we generated a data set composed of 47 SRH images and 47 matched whole slide images (WSIs) of formalin-fixed, paraffin-embedded tissue stained with hematoxylin and eosin, with associated intraoperative clinicoradiologic information and structured diagnostic questions. We compared diagnostic concordance between WSI and SRH-rendered diagnoses. Also, we compared the 1-year median turnaround time (TAT) of intraoperative conventional neuropathology frozen sections with prospectively rendered SRH-telepathology TAT. All SRH images were of sufficient quality for diagnostic review. A review of SRH images showed high accuracy in distinguishing glial from nonglial tumors (96.5% SRH vs 98% WSIs) and predicting final diagnosis (85.9% SRH vs 93.1% WSIs). SRH-based diagnosis and WSI-permanent section diagnosis had high concordance (κ = 0.76). The median TAT for prospectively SRH-rendered diagnosis was 3.7 minutes, approximately 10-fold shorter than the median frozen section TAT (31 minutes). The SRH-imaging procedure did not affect ancillary studies. SRH generates diagnostic virtual histologic images with accuracy comparable to conventional hematoxylin and eosin-based methods in a rapid manner. Our study represents the largest and most rigorous clinical validation of SRH to date. It supports the feasibility of implementing SRH as a rapid method for intraoperative diagnosis complementary to conventional pathology laboratory methods.


Subject(s)
Central Nervous System Neoplasms , Telepathology , Humans , Central Nervous System Neoplasms/diagnosis , Eosine Yellowish-(YS) , Frozen Sections/methods , Hematoxylin , Microscopy , Retrospective Studies , Telepathology/methods
5.
Neuroradiology ; 65(9): 1343-1352, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37468750

ABSTRACT

PURPOSE: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS: One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION: Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Retrospective Studies , Glioma/diagnostic imaging , Glioma/genetics , Magnetic Resonance Imaging/methods , Mutation , World Health Organization
6.
Neurosurg Focus ; 53(6): E12, 2022 12.
Article in English | MEDLINE | ID: mdl-36455278

ABSTRACT

OBJECTIVE: Intraoperative neuropathological assessment with conventional frozen sections supports the neurosurgeon in optimizing the surgical strategy. However, preparation and review of frozen sections can take as long as 45 minutes. Stimulated Raman histology (SRH) was introduced as a novel technique to provide rapid high-resolution digital images of unprocessed tissue samples directly in the operating room that are comparable to conventional histopathological images. Additionally, SRH images are simultaneously and easily accessible for neuropathological judgment. Recently, the first study showed promising results regarding the accuracy and feasibility of SRH compared with conventional histopathology. Thus, the aim of this study was to compare SRH with conventional H&E images and frozen sections in a large cohort of patients with different suspected central nervous system (CNS) tumors. METHODS: The authors included patients who underwent resection or stereotactic biopsy of suspected CNS neoplasm, including brain and spinal tumors. Intraoperatively, tissue samples were safely collected and SRH analysis was performed directly in the operating room. To enable optimal comparison of SRH with H&E images and frozen sections, the authors created a digital databank that included images obtained with all 3 imaging modalities. Subsequently, 2 neuropathologists investigated the diagnostic accuracy, tumor cellularity, and presence of diagnostic histopathological characteristics (score 0 [not present] through 3 [excellent]) determined with SRH images and compared these data to those of H&E images and frozen sections, if available. RESULTS: In total, 94 patients with various suspected CNS tumors were included, and the application of SRH directly in the operating room was feasible in all cases. The diagnostic accuracy based on SRH images was 99% when compared with the final histopathological diagnosis based on H&E images. Additionally, the same histopathological diagnosis was established in all SRH images (100%) when compared with that of the corresponding frozen sections. Moreover, the authors found a statistically significant correlation in tumor cellularity between SRH images and corresponding H&E images (p < 0.0005 and R = 0.867, Pearson correlation coefficient). Finally, excellent (score 3) or good (2) accordance between diagnostic histopathological characteristics and H&E images was present in 95% of cases. CONCLUSIONS: The results of this retrospective analysis demonstrate the near-perfect diagnostic accuracy and capability of visualizing relevant histopathological characteristics with SRH compared with conventional H&E staining and frozen sections. Therefore, digital SRH histopathology seems especially useful for rapid intraoperative investigation to confirm the presence of diagnostic tumor tissue and the precise tumor entity, as well as to rapidly analyze multiple tissue biopsies from the suspected tumor margin. A real-time analysis comparing SRH images and conventional histological images at the time of surgery should be performed as the next step in future studies.


Subject(s)
Central Nervous System Neoplasms , Spinal Cord Neoplasms , Humans , Retrospective Studies , Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/surgery , Staining and Labeling , Biopsy
7.
J Clin Monit Comput ; 36(4): 1227-1232, 2022 08.
Article in English | MEDLINE | ID: mdl-35113286

ABSTRACT

Controversy surrounds regional cerebral oximetry (rSO2) because extracranial contamination and unmeasured changes in cerebral arterial:venous ratio confound readings. Correlation of rSO2 with brain tissue oxygen (PbrO2), a "gold standard" for cerebral oxygenation, could help resolve this controversy but PbrO2 measurement is highly invasive. This was a prospective cohort study. The primary aim was to evaluate correlation between PbrO2 and rSO2 and the secondary aim was to investigate the relationship between changing ventilation regimens and measurement of PbrO2 and rSO2. Patients scheduled for elective removal of cerebral metastases were anesthetized with propofol and remifentanil, targeted to a BIS range 40-60. rSO2 was measured using the INVOS 5100B monitor and PbrO2 using the Licox brain monitoring system. The Licox probe was placed into an area of normal brain within the tumor excision corridor. FiO2 and minute ventilation were sequentially adjusted to achieve two set points: (1) FiO2 0.3 and paCO2 30 mmHg, (2) FiO2 1.0 and paCO2 40 mmHg. PbrO2 and rSO2 were recorded at each. Nine participants were included in the final analysis, which showed a positive Spearman's correlation (r = 0.50, p = 0.036) between PbrO2 and rSO2. From set point 1 to set point 2, PbrO2 increased from median 6.0, IQR 4.0-11.3 to median 22.5, IQR 9.8-43.6, p = 0.015; rSO2 increased from median 68.0, IQR 62.5-80.5 to median 83.0, IQR 74.0-90.0, p = 0.047. Correlation between PbrO2 and rSO2 is evident. Increasing FiO2 and PaCO2 results in significant increases in cerebral oxygenation measured by both monitors.


Subject(s)
Cerebrovascular Circulation , Oximetry , Brain , Humans , Oximetry/methods , Oxygen , Prospective Studies , Respiration
8.
J Neurooncol ; 151(3): 393-402, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33611706

ABSTRACT

INTRODUCTION: Label-free Raman-based imaging techniques create the possibility of bringing chemical and histologic data into the operation room. Relying on the intrinsic biochemical properties of tissues to generate image contrast and optical tissue sectioning, Raman-based imaging methods can be used to detect microscopic tumor infiltration and diagnose brain tumor subtypes. METHODS: Here, we review the application of three Raman-based imaging methods to neurosurgical oncology: Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) microscopy, and stimulated Raman histology (SRH). RESULTS: Raman spectroscopy allows for chemical characterization of tissue and can differentiate normal and tumor-infiltrated tissue based on variations in macromolecule content, both ex vivo and in vivo. To improve signal-to-noise ratio compared to conventional Raman spectroscopy, a second pulsed excitation laser can be used to coherently drive the vibrational frequency of specific Raman active chemical bonds (i.e. symmetric stretching of -CH2 bonds). Coherent Raman imaging, including CARS and stimulated Raman scattering microscopy, has been shown to detect microscopic brain tumor infiltration in fresh brain tumor specimens with submicron image resolution. Advances in fiber-laser technology have allowed for the development of intraoperative SRH as well as artificial intelligence algorithms to facilitate interpretation of SRH images. With molecular diagnostics becoming an essential part of brain tumor classification, preliminary studies have demonstrated that Raman-based methods can be used to diagnose glioma molecular classes intraoperatively. CONCLUSIONS: These results demonstrate how label-free Raman-based imaging methods can be used to improve the management of brain tumor patients by detecting tumor infiltration, guiding tumor biopsy/resection, and providing images for histopathologic and molecular diagnosis.


Subject(s)
Brain Neoplasms/diagnostic imaging , Neuroimaging/methods , Neurosurgical Procedures/methods , Spectrum Analysis, Raman/methods , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Diagnostic Imaging , Humans , Image Processing, Computer-Assisted , Intraoperative Period , Microscopy
9.
J Neurooncol ; 152(2): 347-355, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33528739

ABSTRACT

PURPOSE: Resting state functional magnetic resonance imaging (rsfMRI) is an emerging tool to explore the functional connectivity of different brain regions. We aimed to assess the disruption of functional connectivity of the Default Mode Network (DMN), Dorsal Attention Network(DAN) and Fronto-Parietal Network (FPN) in patients with glial tumors. METHODS: rsfMRI data acquired on 3T-MR of treatment-naive glioma patients prospectively recruited (2015-2019) and matched controls from the 1000 functional-connectomes-project were analyzed using the CONN functional toolbox. Seed-Based Connectivity Analysis (SBCA) and Independent Component Analysis (ICA, with 10 to 100 components) were performed to study reliably the three networks of interest. RESULTS: 35 patients with gliomas (17 WHO grade I-II, 18 grade III-IV) and 70 controls were included. Global increased DMN connectivity was consistently found with SBCA and ICA in patients compared to controls (Cluster1: Precuneus, height: p < 10-6; Cluster2: subcallosum; height: p < 10-5). However, an area of decreased connectivity was found in the posterior corpus callosum, particularly in high-grade gliomas (height: p < 10-5). The DAN demonstrated small areas of increased connectivity in frontal and occipital regions (height: p < 10-6). For the FPN, increased connectivity was noted in the precuneus, posterior cingulate gyrus, and frontal cortex. No difference in the connectivity of the networks of interest was demonstrated between low- and high-grade gliomas, as well as when stratified by their IDH1-R132H (isocitrate dehydrogenase) mutation status. CONCLUSION: Altered functional connectivity is reliably found with SBCA and ICA in the DMN, DAN, and FPN in glioma patients, possibly explained by decreased connectivity between the cerebral hemispheres across the corpus callosum due to disruption of the connections.


Subject(s)
Brain Neoplasms/physiopathology , Default Mode Network/physiopathology , Glioma/physiopathology , Adolescent , Adult , Aged , Brain Mapping/methods , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
10.
BMC Med ; 17(1): 200, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31711490

ABSTRACT

BACKGROUND: Niemann-Pick disease type C is a fatal and progressive neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in late endosomes and lysosomes. We sought to develop new therapeutics for this disorder by harnessing the body's endogenous cholesterol scavenging particle, high-density lipoprotein (HDL). METHODS: Here we design, optimize, and define the mechanism of action of synthetic HDL (sHDL) nanoparticles. RESULTS: We demonstrate a dose-dependent rescue of cholesterol storage that is sensitive to sHDL lipid and peptide composition, enabling the identification of compounds with a range of therapeutic potency. Peripheral administration of sHDL to Npc1 I1061T homozygous mice mobilizes cholesterol, reduces serum bilirubin, reduces liver macrophage size, and corrects body weight deficits. Additionally, a single intraventricular injection into adult Npc1 I1061T brains significantly reduces cholesterol storage in Purkinje neurons. Since endogenous HDL is also a carrier of sphingomyelin, we tested the same sHDL formulation in the sphingomyelin storage disease Niemann-Pick type A. Utilizing stimulated Raman scattering microscopy to detect endogenous unlabeled lipids, we show significant rescue of Niemann-Pick type A lipid storage. CONCLUSIONS: Together, our data establish that sHDL nanoparticles are a potential new therapeutic avenue for Niemann-Pick diseases.


Subject(s)
Lipoproteins, HDL/therapeutic use , Niemann-Pick Disease, Type C/drug therapy , Animals , Cholesterol/metabolism , Dose-Response Relationship, Drug , Female , Lipids , Lipoproteins, HDL/chemical synthesis , Male , Mice , Mice, Inbred C57BL , Nanoparticles/therapeutic use
11.
J Neurooncol ; 143(2): 313-319, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30977058

ABSTRACT

BACKGROUND AND PURPOSE: We evaluated whether dose-intensified chemoradiation alters patterns of failure and is associated with favorable survival in the temozolomide era. MATERIALS AND METHODS: Between 2003 and 2015, 82 patients with newly diagnosed glioblastoma were treated with 66-81 Gy in 30 fractions using conventional magnetic resonance imaging. Progression-free (PFS) and overall survival (OS) were calculated using Kaplan-Meier methods. Factors associated with improved PFS, OS, and time to progression were assessed using multivariate Cox model and linear regression. RESULTS: Median follow-up was 23 months (95% CI 4-124 months). Sixty-one percent of patients underwent subtotal resection or biopsy, and 38% (10/26) of patients with available data had MGMT promoter methylation. Median PFS was 8.4 months (95% CI 7.3-11.0) and OS was 18.7 months (95% CI 13.1-25.3). Only 30 patients (44%) experienced central recurrence, 6 (9%) in-field, 16 (23.5%) marginal and 16 (23.5%) distant. On multivariate analysis, younger age (HR 0.95, 95% CI 0.93-0.97, p = 0.0001), higher performance status (HR 0.39, 95% CI 0.16-0.95, p = 0.04), gross total resection (GTR) versus biopsy (HR 0.37, 95% CI 0.16-0.85, p = 0.02) and MGMT methylation (HR 0.25, 95% CI 0.09-0.71, p = 0.009) were associated with improved OS. Only distant versus central recurrence (p = 0.03) and GTR (p = 0.02) were associated with longer time to progression. Late grade 3 neurologic toxicity was rare (6%) in patients experiencing long-term survival. CONCLUSION: Dose-escalated chemoRT resulted in lower rates of central recurrence and prolonged time to progression compared to historical controls, although a significant number of central recurrences were still observed. Advanced imaging and correlative molecular studies may enable targeted treatment advances that reduce rates of in- and out-of-field progression.


Subject(s)
Brain Neoplasms/mortality , Chemoradiotherapy/mortality , Glioblastoma/mortality , Salvage Therapy , Temozolomide/therapeutic use , Adult , Aged , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Female , Follow-Up Studies , Glioblastoma/diagnosis , Glioblastoma/therapy , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate , Young Adult
12.
Crit Care Med ; 46(8): 1302-1308, 2018 08.
Article in English | MEDLINE | ID: mdl-29742589

ABSTRACT

OBJECTIVES: The postoperative management of patients who undergo brain tumor resection frequently occurs in an ICU. However, the routine admission of all patients to an ICU following surgery is controversial. This study seeks to identify the frequency with which patients undergoing elective supratentorial tumor resection require care, aside from frequent neurologic checks, that is specific to an ICU and to determine the frequency of new complications during ICU admission. Additionally, clinical predictors of ICU-specific care are identified, and a scoring system to discriminate patients most likely to require ICU-specific treatment is validated. DESIGN: Retrospective observational cohort study. SETTING: Academic neurosurgical center. PATIENTS: Two-hundred consecutive adult patients who underwent supratentorial brain tumor surgery. An additional 100 consecutive patients were used to validate the prediction score. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Univariate statistics and multivariable logistic regression were used to identify clinical characteristics associated with ICU-specific treatment. Eighteen patients (9%) received ICU-specific care, and 19 (9.5%) experienced new complications or underwent emergent imaging while in the ICU. Factors significantly associated with ICU-specific care included nonelective admission, preoperative Glasgow Coma Scale, and volume of IV fluids. A simple clinical scoring system that included Karnofsky Performance Status less than 70 (1 point), general endotracheal anesthesia (1 point), and any early postoperative complications (2 points) demonstrated excellent ability to discriminate patients who required ICU-specific care in both the derivation and validation cohorts. CONCLUSIONS: Less than 10% of patients required ICU-specific care following supratentorial tumor resection. A simple clinical scoring system may aid clinicians in stratifying the risk of requiring ICU care and could inform triage decisions when ICU bed availability is limited.


Subject(s)
Craniotomy/statistics & numerical data , Intensive Care Units/statistics & numerical data , Supratentorial Neoplasms/surgery , Adult , Aged , Female , Glasgow Coma Scale , Humans , Karnofsky Performance Status , Length of Stay , Male , Middle Aged , Patient Acuity , Postoperative Complications/epidemiology , Retrospective Studies , Risk Factors
13.
J Neurooncol ; 138(1): 155-162, 2018 May.
Article in English | MEDLINE | ID: mdl-29388034

ABSTRACT

We hypothesized elderly patients with good Karnofsky Performance Status (KPS) treated with standard dose or dose-escalated radiation therapy (SDRT/DERT) and concurrent temozolomide (TMZ) would have favorable overall survival (OS) compared to historical elderly patients treated with hypofractionated RT (HFRT). From 2004 to 2015, 66 patients age ≥ 60 with newly diagnosed, pathologically proven glioblastoma were treated with SDRT/DERT over 30 fractions with concurrent/adjuvant TMZ at a single institution. Kaplan-Meier methods and the log-rank test were used to assess OS and progression-free survival (PFS). Multivariate analysis (MVA) was performed using Cox Proportional-Hazards. Median follow-up was 12.6 months. Doses ranged from 60 to 81 Gy (median 66). Median KPS was 90 (range 60-100) and median age was 67 years (range 60-81), with 29 patients ≥ 70 years old. 32% underwent gross total resection (GTR). MGMT status was known in 28%, 42% of whom were methylated. Median PFS was 8.3 months (95% CI 6.9-11.0) and OS was 12.7 months (95% CI 9.7-14.1). Patients age ≥ 70 with KPS ≥ 90 had a median OS of 12.4 months. Median OS was 27.1 months for MGMT methylated patients. On MVA controlling for age, dose, KPS, MGMT, GTR, and adjuvant TMZ, younger age (HR 0.9, 95% CI 0.8-0.9, p < 0.01), MGMT methylation (HR:0.2, 95% CI 0.1-0.7, p = 0.01), and GTR (HR:0.5, 95% CI 0.3-0.9, p = 0.01) were associated with improved OS. Our findings do not support routine use of a standard 6-week course of radiation therapy in elderly patients with glioblastoma. However, a select group of elderly patients with excellent performance status and MGMT methylation or GTR may experience favorable survival with a standard 6-week course of treatment.


Subject(s)
Brain Neoplasms/mortality , Brain Neoplasms/radiotherapy , Glioblastoma/mortality , Glioblastoma/radiotherapy , Age Factors , Aged , Aged, 80 and over , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/diagnostic imaging , Dose-Response Relationship, Radiation , Female , Follow-Up Studies , Glioblastoma/diagnostic imaging , Humans , Karnofsky Performance Status , Magnetic Resonance Imaging , Male , Middle Aged , Multivariate Analysis , Progression-Free Survival , Retrospective Studies , Temozolomide/therapeutic use
14.
Neurosurg Focus ; 45(5): E8, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30453460

ABSTRACT

OBJECTIVEPituitary adenomas occur in a heterogeneous patient population with diverse perioperative risk factors, endocrinopathies, and other tumor-related comorbidities. This heterogeneity makes predicting postoperative outcomes challenging when using traditional scoring systems. Modern machine learning algorithms can automatically identify the most predictive risk factors and learn complex risk-factor interactions using training data to build a robust predictive model that can generalize to new patient cohorts. The authors sought to build a predictive model using supervised machine learning to accurately predict early outcomes of pituitary adenoma surgery.METHODSA retrospective cohort of 400 consecutive pituitary adenoma patients was used. Patient variables/predictive features were limited to common patient characteristics to improve model implementation. Univariate and multivariate odds ratio analysis was performed to identify individual risk factors for common postoperative complications and to compare risk factors with model predictors. The study population was split into 300 training/validation patients and 100 testing patients to train and evaluate four machine learning models using binary classification accuracy for predicting early outcomes.RESULTSThe study included a total of 400 patients. The mean ± SD patient age was 53.9 ± 16.3 years, 59.8% of patients had nonfunctioning adenomas and 84.7% had macroadenomas, and the mean body mass index (BMI) was 32.6 ± 7.8 (58.0% obesity rate). Multivariate odds ratio analysis demonstrated that age < 40 years was associated with a 2.86 greater odds of postoperative diabetes insipidus and that nonobese patients (BMI < 30) were 2.2 times more likely to develop postoperative hyponatremia. Using broad criteria for a poor early postoperative outcome-major medical and early surgical complications, extended length of stay, emergency department admission, inpatient readmission, and death-31.0% of patients met criteria for a poor early outcome. After model training, a logistic regression model with elastic net (LR-EN) regularization best predicted early postoperative outcomes of pituitary adenoma surgery on the 100-patient testing set-sensitivity 68.0%, specificity 93.3%, overall accuracy 87.0%. The receiver operating characteristic and precision-recall curves for the LR-EN model had areas under the curve of 82.7 and 69.5, respectively. The most important predictive variables were lowest perioperative sodium, age, BMI, highest perioperative sodium, and Cushing's disease.CONCLUSIONSEarly postoperative outcomes of pituitary adenoma surgery can be predicted with 87% accuracy using a machine learning approach. These results provide insight into how predictive modeling using machine learning can be used to improve the perioperative management of pituitary adenoma patients.


Subject(s)
Adenoma/diagnosis , Adenoma/surgery , Machine Learning , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/surgery , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Machine Learning/trends , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Treatment Outcome , Young Adult
15.
Proc Natl Acad Sci U S A ; 111(30): 11121-6, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-24982150

ABSTRACT

For many intraoperative decisions surgeons depend on frozen section pathology, a technique developed over 150 y ago. Technical innovations that permit rapid molecular characterization of tissue samples at the time of surgery are needed. Here, using desorption electrospray ionization (DESI) MS, we rapidly detect the tumor metabolite 2-hydroxyglutarate (2-HG) from tissue sections of surgically resected gliomas, under ambient conditions and without complex or time-consuming preparation. With DESI MS, we identify isocitrate dehydrogenase 1-mutant tumors with both high sensitivity and specificity within minutes, immediately providing critical diagnostic, prognostic, and predictive information. Imaging tissue sections with DESI MS shows that the 2-HG signal overlaps with areas of tumor and that 2-HG levels correlate with tumor content, thereby indicating tumor margins. Mapping the 2-HG signal onto 3D MRI reconstructions of tumors allows the integration of molecular and radiologic information for enhanced clinical decision making. We also validate the methodology and its deployment in the operating room: We have installed a mass spectrometer in our Advanced Multimodality Image Guided Operating (AMIGO) suite and demonstrate the molecular analysis of surgical tissue during brain surgery. This work indicates that metabolite-imaging MS could transform many aspects of surgical care.


Subject(s)
Brain Neoplasms , Glioma , Glutarates/metabolism , Intraoperative Care/methods , Magnetic Resonance Imaging , Mass Spectrometry/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Female , Glioma/diagnostic imaging , Glioma/metabolism , Glioma/surgery , Humans , Male , Mass Spectrometry/instrumentation , Radiography
16.
Neuroimage ; 132: 477-490, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26899788

ABSTRACT

The ability to detect neuronal currents with high spatiotemporal resolution using magnetic resonance imaging (MRI) is important for studying human brain function in both health and disease. While significant progress has been made, we still lack evidence showing that it is possible to measure an MR signal time-locked to neuronal currents with a temporal waveform matching concurrently recorded local field potentials (LFPs). Also lacking is evidence that such MR data can be used to image current distribution in active tissue. Since these two results are lacking even in vitro, we obtained these data in an intact isolated whole cerebellum of turtle during slow neuronal activity mediated by metabotropic glutamate receptors using a gradient-echo EPI sequence (TR=100ms) at 4.7T. Our results show that it is possible (1) to reliably detect an MR phase shift time course matching that of the concurrently measured LFP evoked by stimulation of a cerebellar peduncle, (2) to detect the signal in single voxels of 0.1mm(3), (3) to determine the spatial phase map matching the magnetic field distribution predicted by the LFP map, (4) to estimate the distribution of neuronal current in the active tissue from a group-average phase map, and (5) to provide a quantitatively accurate theoretical account of the measured phase shifts. The peak values of the detected MR phase shifts were 0.27-0.37°, corresponding to local magnetic field changes of 0.67-0.93nT (for TE=26ms). Our work provides an empirical basis for future extensions to in vivo imaging of neuronal currents.


Subject(s)
Brain Mapping/methods , Brain Waves , Cerebellum/physiology , Magnetic Resonance Imaging/methods , Animals , Electric Stimulation , Electrophysiological Phenomena , Magnetic Fields , Signal Processing, Computer-Assisted , Turtles
17.
Proc Natl Acad Sci U S A ; 110(5): 1611-6, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23300285

ABSTRACT

The main goal of brain tumor surgery is to maximize tumor resection while preserving brain function. However, existing imaging and surgical techniques do not offer the molecular information needed to delineate tumor boundaries. We have developed a system to rapidly analyze and classify brain tumors based on lipid information acquired by desorption electrospray ionization mass spectrometry (DESI-MS). In this study, a classifier was built to discriminate gliomas and meningiomas based on 36 glioma and 19 meningioma samples. The classifier was tested and results were validated for intraoperative use by analyzing and diagnosing tissue sections from 32 surgical specimens obtained from five research subjects who underwent brain tumor resection. The samples analyzed included oligodendroglioma, astrocytoma, and meningioma tumors of different histological grades and tumor cell concentrations. The molecular diagnosis derived from mass-spectrometry imaging corresponded to histopathology diagnosis with very few exceptions. Our work demonstrates that DESI-MS technology has the potential to identify the histology type of brain tumors. It provides information on glioma grade and, most importantly, may help define tumor margins by measuring the tumor cell concentration in a specimen. Results for stereotactically registered samples were correlated to preoperative MRI through neuronavigation, and visualized over segmented 3D MRI tumor volume reconstruction. Our findings demonstrate the potential of ambient mass spectrometry to guide brain tumor surgery by providing rapid diagnosis, and tumor margin assessment in near-real time.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Monitoring, Intraoperative/methods , Spectrometry, Mass, Electrospray Ionization/methods , Astrocytoma/chemistry , Astrocytoma/diagnosis , Astrocytoma/surgery , Brain Neoplasms/chemistry , Diagnosis, Differential , Glioma/chemistry , Glioma/diagnosis , Glioma/surgery , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Meningeal Neoplasms/chemistry , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/surgery , Meningioma/chemistry , Meningioma/diagnosis , Meningioma/surgery , Oligodendroglioma/chemistry , Oligodendroglioma/diagnosis , Oligodendroglioma/surgery , Phosphatidylinositols/analysis , Phosphatidylserines/analysis , Plasmalogens/analysis , Reproducibility of Results , Sensitivity and Specificity , Stereotaxic Techniques
18.
Neurosurg Focus ; 40(3): E9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26926067

ABSTRACT

Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Neurosurgical Procedures/standards , Spectrum Analysis, Raman/standards , Humans , Neurosurgical Procedures/methods , Spectrum Analysis, Raman/methods
19.
Hum Brain Mapp ; 35(3): 1018-30, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23288627

ABSTRACT

Presurgical language mapping for patients with lesions close to language areas is critical to neurosurgical decision-making for preservation of language function. As a clinical noninvasive imaging technique, functional MRI (fMRI) is used to identify language areas by measuring blood-oxygen-level dependent (BOLD) signal change while patients perform carefully timed language vs. control tasks. This task-based fMRI critically depends on task performance, excluding many patients who have difficulty performing language tasks due to neurologic deficits. On the basis of recent discovery of resting-state fMRI (rs-fMRI), we propose a "task-free" paradigm acquiring fMRI data when patients simply are at rest. This paradigm is less demanding for patients to perform and easier for technologists to administer. We investigated the feasibility of this approach in right-handed healthy control subjects. First, group independent component analysis (ICA) was applied on the training group (14 subjects) to identify group level language components based on expert rating results. Then, four empirically and structurally defined language network templates were assessed for their ability to identify language components from individuals' ICA output of the testing group (18 subjects) based on spatial similarity analysis. Results suggest that it is feasible to extract language activations from rs-fMRI at the individual subject level, and two empirically defined templates (that focuses on frontal language areas and that incorporates both frontal and temporal language areas) demonstrated the best performance. We propose a semi-automated language component identification procedure and discuss the practical concerns and suggestions for this approach to be used in clinical fMRI language mapping.


Subject(s)
Brain Mapping/methods , Brain/physiology , Language , Nerve Net/physiology , Preoperative Care/methods , Adult , Brain Mapping/instrumentation , Feasibility Studies , Female , Humans , Magnetic Resonance Imaging , Male , Preoperative Care/standards , Rest/physiology , Young Adult
20.
medRxiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854127

ABSTRACT

The diagnosis and treatment of tumors often depends on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. To address this gap, we developed Ultra-Rapid droplet digital PCR (UR-ddPCR), which can be completed in 15 minutes from tissue to result with an accuracy comparable to standard ddPCR. We demonstrate UR-ddPCR assays for the IDH1 R132H and BRAF V600E clonal mutations that are present in many low-grade gliomas and melanomas, respectively. We illustrate the clinical feasibility of UR-ddPCR by performing it intraoperatively for 13 glioma cases. We further combine UR-ddPCR measurements with UR-stimulated Raman histology intraoperatively to estimate tumor cell densities in addition to tumor cell percentages. We anticipate that UR-ddPCR, along with future refinements in assay instrumentation, will enable novel point-of-care diagnostics and the development of molecularly-guided surgeries that improve clinical outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL