Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Biol Chem ; 286(44): 38043-38053, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21914810

ABSTRACT

Insulin activation of mTOR complex 1 is accompanied by enhanced binding of substrates. We examined the mechanism and contribution of this enhancement to insulin activation of mTORC1 signaling in 293E and HeLa cells. In 293E, insulin increased the amount of mTORC1 retrieved by the transiently expressed nonphosphorylatable 4E-BP[5A] to an extent that varied inversely with the amount of PRAS40 bound to mTORC1. RNAi depletion of PRAS40 enhanced 4E-BP[5A] binding to ∼70% the extent of maximal insulin, and PRAS40 RNAi and insulin together did not increase 4E-BP[5A] binding beyond insulin alone, suggesting that removal of PRAS40 from mTORC1 is the predominant mechanism of an insulin-induced increase in substrate access. As regards the role of increased substrate access in mTORC1 signaling, RNAi depletion of PRAS40, although increasing 4E-BP[5A] binding, did not stimulate phosphorylation of endogenous mTORC1 substrates S6K1(Thr(389)) or 4E-BP (Thr(37)/Thr(46)), the latter already ∼70% of maximal in amino acid replete, serum-deprived 293E cells. In HeLa cells, insulin and PRAS40 RNAi also both enhanced the binding of 4E-BP[5A] to raptor but only insulin stimulated S6K1 and 4E-BP phosphorylation. Furthermore, Rheb overexpression in 293E activated mTORC1 signaling completely without causing PRAS40 release. In the presence of Rheb and insulin, PRAS40 release is abolished by Akt inhibition without diminishing mTORC1 signaling. In conclusion, dissociation of PRAS40 from mTORC1 and enhanced mTORC1 substrate binding results from Akt and mTORC1 activation and makes little or no contribution to mTORC1 signaling, which rather is determined by Rheb activation of mTOR catalytic activity, through mechanisms that remain to be fully elucidated.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation , Phosphoproteins/metabolism , Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glutathione Transferase/metabolism , HeLa Cells , Humans , Insulin/metabolism , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes , Phosphorylation , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
Biochem Soc Trans ; 37(Pt 1): 223-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19143636

ABSTRACT

The signalling function of mTOR complex 1 is activated by Rheb-GTP, which controls the catalytic competence of the mTOR (mammalian target of rapamycin) kinase domain by an incompletely understood mechanism. Rheb can bind directly to the mTOR kinase domain, and association with inactive nucleotide-deficient Rheb mutants traps mTOR in a catalytically inactive state. Nevertheless, Rheb-GTP targets other than mTOR, such as FKBP38 (FK506-binding protein 38) and/or PLD1 (phospholipase D(1)), may also contribute to mTOR activation. Once activated, the mTOR catalytic domain phosphorylates substrates only when they are bound to raptor (regulatory associated protein of mTOR), a separate polypeptide within the complex. The mechanism of insulin/nutrient stimulation of mTOR complex 1 signalling, in addition to Rheb-GTP activation of the mTOR catalytic function, also involves a stable modification of the configuration of mTORC1 (mTOR complex 1) that increases access of substrates to their binding site on the raptor polypeptide. The mechanism underlying this second step in the activation of mTORC1 is unknown.


Subject(s)
Guanosine Triphosphate/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neuropeptides/metabolism , Transcription Factors/metabolism , Animals , Catalysis , Enzyme Activation , Humans
3.
Curr Biol ; 15(8): 702-13, 2005 Apr 26.
Article in English | MEDLINE | ID: mdl-15854902

ABSTRACT

BACKGROUND: The target of rapamycin (TOR), in complex with the proteins raptor and LST8 (TOR complex 1), phosphorylates the p70S6K and 4E-BP1 to promote mRNA translation. Genetic evidence establishes that TOR complex activity in vivo requires the small GTPase Rheb, and overexpression of Rheb can rescue TOR from inactivation in vivo by amino-acid withdrawal. The Tuberous Sclerosis heterodimer (TSC1/TSC2) functions as a Rheb GTPase activator and inhibits TOR signaling in vivo. RESULTS: Here, we show that Rheb binds to the TOR complex specifically, independently of its ability to bind TSC2, through separate interactions with the mTOR catalytic domain and with LST8. Rheb binding to the TOR complex in vivo and in vitro does not require Rheb guanyl nucleotide charging but is modulated by GTP and impaired by certain mutations (Ile39Lys) in the switch 1 loop. Nucleotide-deficient Rheb mutants, although capable of binding mTOR in vivo and in vitro, are inhibitory in vivo, and the mTOR polypeptides that associate with nucleotide-deficient Rheb in vivo lack kinase activity in vitro. Reciprocally, mTOR polypeptides bound to Rheb(Gln64Leu), a mutant that is nearly 90% GTP charged, exhibit substantially higher protein kinase specific activity than mTOR bound to wild-type Rheb. CONCLUSIONS: The TOR complex 1 is a direct target of Rheb-GTP, whose binding enables activation of the TOR kinase.


Subject(s)
Monomeric GTP-Binding Proteins/metabolism , Neuropeptides/metabolism , Protein Biosynthesis/physiology , Protein Kinases/metabolism , RNA, Messenger/metabolism , Signal Transduction/physiology , Adaptor Proteins, Signal Transducing , Cells, Cultured , DNA Primers , Enzyme Activation/physiology , Guanosine Triphosphate/metabolism , Humans , Immunoblotting , Monomeric GTP-Binding Proteins/genetics , Mutation/genetics , Neuropeptides/genetics , Phosphorylation , Plasmids/genetics , Proteins , Ras Homolog Enriched in Brain Protein , Regulatory-Associated Protein of mTOR , Repressor Proteins/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases , Transfection , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism
4.
Oncotarget ; 8(38): 63392-63404, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28968999

ABSTRACT

mSin1 is a unique component within the mammalian target of rapamycin (mTOR) complex 2 (mTORC2), which is responsible for cellular morphology and glucose metabolism. The association between mSin1 and other mTORC2 components, as well as their functions, has been explored previously; nevertheless, the mapping of the various binding domains of the components is lacking. Based on an evolutionary analysis of the gene, we constructed various fragments and truncated-forms of mSin1. We characterized the individual binding sites of mSin1 with its various partners, including mTOR, Rictor, Ras, and Akt. mTOR and Rictor bind to the amino acid (aa) 100-240 region of mSin1, which is different to the Ras binding site, the aa 260-460 region. A reciprocal examination found that mSin1 associated with the aa 2148-2300 region of mTOR, which is within the kinase domain, and with the carboxyl terminus of Rictor. Interestingly, Akt was found to associate with mSin1 in a region that slightly overlapped with the mTOR/Rictor complex binding site, namely aa 220-260. When only the Akt binding site was deleted from mSin1, phosphorylation of Akt S473 was greatly reduced. Furthermore, the association between Akt and mTOR can be regulated by serum, insulin and LY294002, but not by rapamycin or MAPK kinase inhibitors. Taken together, mSin1 would seem to act as a hub that allows mTORC2 to phosphorylate Akt S473. Our findings should facilitate future proteomic and crystallographic studies, help the development of dominant inhibitors and promote the identification of new drug targets.

5.
Methods Enzymol ; 407: 290-310, 2006.
Article in English | MEDLINE | ID: mdl-16757333

ABSTRACT

The six human Nore1/RASSF genes encode a family of putative tumor suppressor proteins, each expressed as multiple mRNA splice variants. The predominant isoforms of these noncatalytic polypeptides are characterized by the presence in their carboxyterminal segments of a Ras-Association (RA) domain followed by a SARAH domain. The expression of the RASSF1A and Nore1A isoforms is extinguished selectively by gene loss and/or epigenetic mechanisms in a considerable fraction of epithelial cancers and cell lines derived therefrom, and reexpression usually suppresses the proliferation and tumorigenicity of these cells. RASSF1A/Nore1A can cause cell cycle delay in G1 and/or M and may promote apoptosis. The founding member, Nore1A, binds preferentially through its RA domain to the GTP-charged forms of Ras, Rap-1, and several other Ras subfamily GTPases with high affinity. By contrast, RASSF1, despite an RA domain 50% identical to Nore1, exhibits relatively low affinity for Ras-like GTPases but may associate with Ras-GTP indirectly. Each of the RASSF polypeptides, including the C. elegans ortholog encoded by T24F1.3, binds to the Ste20-related protein kinases MST1 and MST2 through the SARAH domains of each partner. The recombinant MST1/2 kinases, spontaneous dimers, autoactivate in vitro through an intradimer transphosphorylation of the activation loop, and the Nore1/RASSF1 polypeptides inhibit this process. Recombinant MST1 is strongly activated in vivo by recruitment to the membrane; the recombinant MST1 that is bound to RasG12V through Nore1A is activated; however, the bulk of MST1 is not. Endogenous complexes of MST1 with both Nore1A and RASSF1A are detectable, and Nore1A/MST1 can associate with endogenous Ras in response to serum addition. Nevertheless, the physiological functions of the Nore1/RASSF polypeptides in mammalian cells, as well as the role of the MST1/2 kinases in their growth-suppressive actions, remain to be established. The Drosophila MST1/2 ortholog hippo is a negative regulator of cell cycle progression and is necessary for developmental apoptosis. Overexpression of mammalian MST1 or MST2 promotes apoptosis, as does overexpression of mutant active Ki-Ras. Interference with the ability of endogenous MST1/2 to associate with the Nore1/RASSF polypeptides inhibits Ras-induced apoptosis. At present, however, the relevance of Ki-Ras-induced apoptosis to the physiological functions of c-Ras and to the growth-regulating actions of spontaneously occurring oncogenic Ras mutants is not known.


Subject(s)
Monomeric GTP-Binding Proteins/physiology , Tumor Suppressor Proteins/physiology , Adaptor Proteins, Signal Transducing , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Small Cell/metabolism , Cell Proliferation/drug effects , Enzyme Activation , G1 Phase/drug effects , Germinal Center Kinases , Humans , Intracellular Signaling Peptides and Proteins , KB Cells , Neoplasms/physiopathology , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/metabolism , Serine-Threonine Kinase 3 , rap1 GTP-Binding Proteins/metabolism , ras Proteins/physiology
6.
Oncogene ; 21(9): 1381-90, 2002 Feb 21.
Article in English | MEDLINE | ID: mdl-11857081

ABSTRACT

Nore and RASSF1A are noncatalytic proteins that share 50% identity over their carboxyterminal 300 AA, a segment that encompasses a putative Ras-Rap association (RA) domain. RASSF1 is expressed as several splice variants, each of which contain an RA domain, however the 340 AA RASSF1A, but not the shorter RASSF1C variant, is a putative tumor suppressor. Nore binds to Ras and several Ras-like GTPases in a GTP dependent fashion however neither RASSF1 (A or C) or the C. elegans Nore/RASSF1 homolog, T24F1.3 exhibit any interaction with Ras or six other Ras-like GTPases in a yeast two-hybrid expression assay. A low recovery of RASSF1A (but not RASSF1C) in association with RasG12V is observed however on transient expression in COS cells. Nore and RASSF1A can each efficiently homodimerize and heterodimerize with each other through their nonhomologous aminoterminal segments. Recombinant RASSF1C exhibits a much weaker ability to homodimerize or heterodimerize; thus the binding of RASSF1C to Nore is very much less than the binding of RASSF1A to Nore. The association of RASSF1A with RasG12V in COS cells appears to reflect the heterodimerization of RASSF1A with Nore, inasmuch the recovery of RASSF1A with RasG12V is increased by concurrent expression of full length Nore, and abolished by expression of Nore deleted of its RA domain. The preferential ability of RASSF1A to heterodimerize with Nore and thereby associate with Ras-like GTPases may be relevant to its putative tumor suppressor function.


Subject(s)
Caenorhabditis elegans Proteins , Monomeric GTP-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Tumor Suppressor Proteins , Animals , Blotting, Western , COS Cells , Dimerization , Genes, Tumor Suppressor , Molecular Weight , Monomeric GTP-Binding Proteins/genetics , Neoplasm Proteins/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Two-Hybrid System Techniques , Yeasts/genetics
7.
Biochem J ; 381(Pt 2): 453-62, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15109305

ABSTRACT

MST1 (mammalian Sterile20-like 1) and MST2 are closely related Class II GC (protein Ser/Thr) kinases that initiate apoptosis when transiently overexpressed in mammalian cells. In the present study, we show that recombinant MST1/2 undergo a robust autoactivation in vitro, mediated by an intramolecular autophosphorylation of a single site [MST1(Thr183)/MST2(Thr180)] on the activation loop of an MST dimer. Endogenous full-length MST1 is activated by a variety of stressful stimuli, accompanied by the secondary appearance of a 36 kDa Thr183-phosphorylated, caspase-cleaved catalytic fragment. Recombinant MST1 exhibits only 2-5% activation during transient expression; endogenous MST1 in the cycling HeLa or KB cells has a similar low fractional activation, but 2 h incubation with okadaic acid (1 mM) results in 100% activation. Endogenous MST1 immunoprecipitated from KB cells is specifically associated with substoichiometric amounts of the growth inhibitory polypeptides RASSF1A and NORE1A (novel Ras effector 1A; a Ras-GTP-binding protein). Co-expression of RASSF1A, RASSF1C, NORE1A and NORE1B with MST1 markedly suppresses MST1(Thr183) phosphorylation in vivo and abolishes the ability of MST1 to undergo Mg-ATP-mediated autoactivation in vitro; direct addition of purified NORE1A in vitro also inhibits MST1 activation. In contrast, co-transfection of MST1 with NORE1A modified by the addition of a C-terminal CAAX motif results in a substantial increase in MST1(Thr183) phosphorylation, as does fusion of a myristoylation motif directly on to the MST1 N-terminus. Moreover, MST1 polypeptides, bound via wild-type NORE1A to Ras(G12V) (where G12V stands for Gly12Val), exhibit higher Thr183 phosphorylation compared with MST1 bound to NORE1A alone. Nevertheless, serum stimulation of KB cells does not detectably increase the activation state of endogenous MST1 or MST2 despite promoting the recruitment of the endogenous NORE1-MST1 complex to endogenous Ras. We propose that the NORE1/RASSF1 polypeptides, in addition to their role in maintaining the low activity of MST1 in vivo, direct MST1 to sites of activation and perhaps co-localization with endogenous substrates.


Subject(s)
Growth Inhibitors/physiology , Membrane Proteins/physiology , Monomeric GTP-Binding Proteins/physiology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins p21(ras)/physiology , Tumor Suppressor Proteins/physiology , Adaptor Proteins, Signal Transducing , Animals , Apoptosis Regulatory Proteins , COS Cells/enzymology , Cell Line , Chlorocebus aethiops , Humans , Intracellular Signaling Peptides and Proteins , Kidney/cytology , Kidney/embryology , Kidney/enzymology , Phosphorylation , Serine-Threonine Kinase 3
8.
Am J Physiol Endocrinol Metab ; 296(4): E592-602, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18765678

ABSTRACT

TOR complex 1 (TORC1), an oligomer of the mTOR (mammalian target of rapamycin) protein kinase, its substrate binding subunit raptor, and the polypeptide Lst8/GbetaL, controls cell growth in all eukaryotes in response to nutrient availability and in metazoans to insulin and growth factors, energy status, and stress conditions. This review focuses on the biochemical mechanisms that regulate mTORC1 kinase activity, with special emphasis on mTORC1 regulation by amino acids. The dominant positive regulator of mTORC1 is the GTP-charged form of the ras-like GTPase Rheb. Insulin, growth factors, and a variety of cellular stressors regulate mTORC1 by controlling Rheb GTP charging through modulating the activity of the tuberous sclerosis complex, the Rheb GTPase activating protein. In contrast, amino acids, especially leucine, regulate mTORC1 by controlling the ability of Rheb-GTP to activate mTORC1. Rheb binds directly to mTOR, an interaction that appears to be essential for mTORC1 activation. In addition, Rheb-GTP stimulates phospholipase D1 to generate phosphatidic acid, a positive effector of mTORC1 activation, and binds to the mTOR inhibitor FKBP38, to displace it from mTOR. The contribution of Rheb's regulation of PL-D1 and FKBP38 to mTORC1 activation, relative to Rheb's direct binding to mTOR, remains to be fully defined. The rag GTPases, functioning as obligatory heterodimers, are also required for amino acid regulation of mTORC1. As with amino acid deficiency, however, the inhibitory effect of rag depletion on mTORC1 can be overcome by Rheb overexpression, whereas Rheb depletion obviates rag's ability to activate mTORC1. The rag heterodimer interacts directly with mTORC1 and may direct mTORC1 to the Rheb-containing vesicular compartment in response to amino acid sufficiency, enabling Rheb-GTP activation of mTORC1. The type III phosphatidylinositol kinase also participates in amino acid-dependent mTORC1 activation, although the site of action of its product, 3'OH-phosphatidylinositol, in this process is unclear.


Subject(s)
Amino Acids/physiology , Transcription Factors/physiology , Amino Acids/metabolism , Amino Acids/pharmacology , Animals , Drosophila Proteins/physiology , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/physiology , Humans , Mechanistic Target of Rapamycin Complex 1 , Models, Biological , Monomeric GTP-Binding Proteins/physiology , Multiprotein Complexes , Neuropeptides/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/physiology , Phospholipase D/metabolism , Phospholipase D/physiology , Proteins , Ras Homolog Enriched in Brain Protein , Signal Transduction/drug effects , TOR Serine-Threonine Kinases , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/physiology , Transcription Factors/metabolism
9.
J Biol Chem ; 282(25): 18542-18551, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17470430

ABSTRACT

The small GTPase Rheb is a positive upstream regulator of the target of rapamycin (TOR) complex 1 in mammalian cells and can bind directly to TOR complex 1. To identify the regions of the Rheb surface most critical for signaling to TOR complex 1, we created a set of 26 mutants wherein clusters of 1-5 putative solvent-exposed residues were changed to alanine, ultimately changing 65 residues distributed over the entire Rheb surface. The signaling function of these mutants was assessed by their ability, in comparison to wild type Rheb, to restore the phosphorylation of S6K1(Thr389) when expressed transiently in amino acid-deprived 293T cells. The major finding is that two mutants situated in the Rheb switch 2 segment, Y67A/I69A and I76A/D77A, exhibit a near total loss of function, whereas extensive replacement of the switch 1 segment and other surface residues with alanines causes relatively little disturbance of Rheb rescue of S6K1 from amino acid withdrawal. This is surprising in view of the minimal impact of guanyl nucleotide on Rheb switch 2 configuration. The loss of function Rheb switch 2 mutants are well expressed and exhibit partial agonist function in amino acid-replete cells. They are unimpaired in their ability to bind GTP or mammalian (m)TOR in vivo or in vitro, and the mTOR polypeptides retrieved with these inactive Rheb mutants exhibit kinase activity in vitro comparable with mTOR bound to wild type Rheb. We conclude that Rheb signaling to mTOR in vivo requires a Rheb switch 2-dependent interaction with an element other than the three known polypeptide components of TOR complex 1.


Subject(s)
Monomeric GTP-Binding Proteins/physiology , Neuropeptides/physiology , Protein Kinases/metabolism , Amino Acid Sequence , Animals , Cell Line , Guanosine Triphosphate/metabolism , Humans , Molecular Sequence Data , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Mutation , Neuropeptides/chemistry , Peptides/chemistry , Ras Homolog Enriched in Brain Protein , Schizosaccharomyces/metabolism , Sequence Homology, Amino Acid , Signal Transduction , TOR Serine-Threonine Kinases , Transfection
10.
J Biol Chem ; 280(25): 23433-6, 2005 Jun 24.
Article in English | MEDLINE | ID: mdl-15878852

ABSTRACT

The removal of extracellular amino acids or leucine alone inhibits the ability of the mammalian target of rapamycin (mTOR) to signal to the raptor-dependent substrates, p70 S6 kinase and 4E-BP. This inhibition can be overcome by overexpression of the Rheb GTPase. Rheb binds directly to the amino-terminal lobe of the mTOR catalytic domain, and activates mTOR kinase in a GTP-dependent manner. Herein we show that the binding of Rheb to endogenous and recombinant mTOR is reversibly inhibited by withdrawal of all extracellular amino acids or just leucine. The effect of amino acid withdrawal is not attributable to changes in Rheb-GTP charging; amino acid withdrawal does not alter the GTP charging of recombinant Rheb. Moreover, the binding of mTOR to Rheb mutants that are unable to bind guanyl nucleotide in vivo is also inhibited by amino withdrawal. The inhibitory effect of amino acid withdrawal is exerted through an action on mTOR, at a site largely distinct from that responsible for the binding of Rheb; deletion of the larger, carboxyl-terminal lobe of the mTOR catalytic domain eliminates the inhibitory effect of amino acid withdrawal on Rheb binding, without altering Rheb binding per se. The lesser ability of the mTOR catalytic domain to bind Rheb after amino acid withdrawal does not persist after extraction and purification of the mTOR polypeptide. Amino acid withdrawal may generate an inhibitor of the Rheb-mTOR interaction that interferes with the signaling function of TOR complex 1.


Subject(s)
Monomeric GTP-Binding Proteins/metabolism , Neuropeptides/metabolism , Protein Kinases/metabolism , Amino Acids/metabolism , Cell Line , Humans , Protein Binding , Protein Kinases/chemistry , Ras Homolog Enriched in Brain Protein , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , TOR Serine-Threonine Kinases
11.
Curr Opin Clin Nutr Metab Care ; 8(1): 67-72, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15586002

ABSTRACT

PURPOSE OF REVIEW: The aim of this article is to summarize recent advances in the understanding of the regulation of the target of rapamycin (TOR), a protein kinase that is regulated independently by insulin, amino acids and energy sufficiency and which participates in the control of the component of protein synthesis responsible for cell growth. RECENT FINDINGS: These have been found in two major areas: genetic studies in Drosophila followed by studies in mammalian systems have identified the components of the Tuberous Sclerosis protein complex, a heterodimer of the proteins Hamartin and Tuberin, as inhibitors of TOR signaling, and as the major targets by which the insulin/IGF-1 signal transduction pathway, through the protein kinase PKB, and the energy status of the cell, through the AMP-activated protein kinase, regulate the TOR signaling. In turn, the inhibitory action of the tuberous sclerosis protein complex has been shown to be mediated by its ability to deactivate the small, ras-like GTPase Rheb. A second advance has been achieved by the identification of the TOR-associated protein raptor, as an indispensable substrate binding sub-unit of the TOR complex, and as the site at which the inhibitory effects on TOR signaling of rapamycin and amino acid deficiency converge. SUMMARY: These findings bring us closer to the understanding of how nutrients and insulin coordinate protein synthesis to regulate anabolic cell growth.


Subject(s)
GTPase-Activating Proteins/metabolism , Insulin/metabolism , Monomeric GTP-Binding Proteins/metabolism , Neuropeptides/metabolism , Protein Kinases/metabolism , Tuberous Sclerosis/metabolism , Humans , Ras Homolog Enriched in Brain Protein , Repressor Proteins/metabolism , Signal Transduction , TOR Serine-Threonine Kinases , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL