Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Haematologica ; 107(3): 593-603, 2022 03 01.
Article in English | MEDLINE | ID: mdl-33691382

ABSTRACT

Genome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and ≥5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (κ=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57). High complexity maintained its significance in the multivariate analysis for TTFT including TP53 and IGHV status when defined by CBA (hazard ratio [HR] 3.23; P<0.001) and GM (HR 2.74; P<0.001). Our findings suggest that both methods are useful but not equivalent for risk stratification of CLL patients. Validation studies are needed to establish the prognostic value of genome complexity based on GM data in future prospective studies.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Chromosome Aberrations , Chromosome Banding , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Prognosis , Risk Assessment
2.
Blood ; 133(11): 1205-1216, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30602617

ABSTRACT

Recent evidence suggests that complex karyotype (CK) defined by the presence of ≥3 chromosomal aberrations (structural and/or numerical) identified by using chromosome-banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges toward the routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with ≥5 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcomes, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and/or TP53 mutations [TP53abs]), and the expression of somatically hypermutated (M-CLL) or unmutated immunoglobulin heavy variable genes. Thus, they contrasted with CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs, and immunoglobulin heavy variable gene somatic hypermutation status, we propose a novel hierarchical model in which patients with high-CK exhibit the worst prognosis, whereas those with mutated CLL lacking CK or TP53abs, as well as CK with +12,+19, show the longest overall survival. Thus, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with ≥5 chromosomal aberrations emerges as prognostically adverse, independent of other biomarkers. Prospective clinical validation is warranted before ultimately incorporating high-CK in risk stratification of CLL.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Aberrations , Cytogenetics/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mutation , Aged , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Prognosis , Retrospective Studies , Somatic Hypermutation, Immunoglobulin/genetics , Survival Rate , Tumor Suppressor Protein p53/genetics
3.
Haematologica ; 106(3): 682-691, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32273480

ABSTRACT

Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2- 99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Reproducibility of Results
4.
Haematologica ; 106(1): 87-97, 2021 01 01.
Article in English | MEDLINE | ID: mdl-31974198

ABSTRACT

Complex karyotype (CK) identified by chromosome-banding analysis (CBA) has shown prognostic value in chronic lymphocytic leukemia (CLL). Genomic arrays offer high-resolution genome-wide detection of copy-number alterations (CNAs) and could therefore be well equipped to detect the presence of a CK. Current knowledge on genomic arrays in CLL is based on outcomes of single center studies, in which different cutoffs for CNA calling were used. To further determine the clinical utility of genomic arrays for CNA assessment in CLL diagnostics, we retrospectively analyzed 2293 arrays from 13 diagnostic laboratories according to established standards. CNAs were found outside regions captured by CLL FISH probes in 34% of patients, and several of them including gains of 8q, deletions of 9p and 18p (p<0.01) were linked to poor outcome after correction for multiple testing. Patients (n=972) could be divided in three distinct prognostic subgroups based on the number of CNAs. Only high genomic complexity (high-GC), defined as ≥5 CNAs emerged as an independent adverse prognosticator on multivariable analysis for time to first treatment (Hazard ratio: 2.15, 95% CI: 1.36-3.41; p=0.001) and overall survival (Hazard ratio: 2.54, 95% CI: 1.54-4.17; p<0.001; n=528). Lowering the size cutoff to 1 Mb in 647 patients did not significantly improve risk assessment. Genomic arrays detected more chromosomal abnormalities and performed at least as well in terms of risk stratification compared to simultaneous chromosome banding analysis as determined in 122 patients. Our findings highlight genomic array as an accurate tool for CLL risk stratification.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Chromosome Aberrations , Genome, Human , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Retrospective Studies
5.
Blood ; 132(21): 2280-2285, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30282799

ABSTRACT

The WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue notes instances of Burkitt lymphoma/leukemia (BL) with IG-MYC rearrangement displaying a B-cell precursor immunophenotype (termed herein "preBLL"). To characterize the molecular pathogenesis of preBLL, we investigated 13 preBLL cases (including 1 cell line), of which 12 were analyzable using genome, exome, and targeted sequencing, imbalance mapping, and DNA methylation profiling. In 5 patients with reads across the IG-MYC breakpoint junctions, we found evidence that the translocation derived from an aberrant VDJ recombination, as is typical for IG translocations arising in B-cell precursors. Genomic changes like biallelic IGH translocations or VDJ rearrangements combined with translocation into the VDJ region on the second allele, potentially preventing expression of a productive immunoglobulin, were detected in 6 of 13 cases. We did not detect mutations in genes frequently altered in BL, but instead found activating NRAS and/or KRAS mutations in 7 of 12 preBLLs. Gains on 1q, recurrent in BL and preB lymphoblastic leukemia/lymphoma (pB-ALL/LBL), were detected in 7 of 12 preBLLs. DNA methylation profiling showed preBLL to cluster with precursor B cells and pB-ALL/LBL, but apart from BL. We conclude that preBLL genetically and epigenetically resembles pB-ALL/LBL rather than BL. Therefore, we propose that preBLL be considered as a pB-ALL/LBL with recurrent genetic abnormalities.


Subject(s)
Burkitt Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cells, B-Lymphoid/pathology , Proto-Oncogene Proteins c-myc/genetics , V(D)J Recombination , Adolescent , Adult , Aged , Burkitt Lymphoma/diagnosis , Burkitt Lymphoma/pathology , Child , Child, Preschool , DNA Methylation , Female , Gene Rearrangement, B-Lymphocyte , Humans , Male , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/metabolism , Retrospective Studies , Translocation, Genetic , Young Adult
6.
J Pathol ; 247(4): 416-421, 2019 04.
Article in English | MEDLINE | ID: mdl-30484876

ABSTRACT

The B cell receptor immunoglobulin (Ig) gene repertoires of marginal zone (MZ) lymphoproliferations were analyzed in order to obtain insight into their ontogenetic relationships. Our cohort included cases with MZ lymphomas (n = 488), i.e. splenic (SMZL), nodal (NMZL) and extranodal (ENMZL), as well as provisional entities (n = 76), according to the WHO classification. The most striking Ig gene repertoire skewing was observed in SMZL. However, restrictions were also identified in all other MZ lymphomas studied, particularly ENMZL, with significantly different Ig gene distributions depending on the primary site of involvement. Cross-entity comparisons of the MZ Ig sequence dataset with a large dataset of Ig sequences (MZ-related or not; n = 65 837) revealed four major clusters of cases sharing homologous ('public') heavy variable complementarity-determining region 3. These clusters included rearrangements from SMZL, ENMZL (gastric, salivary gland, ocular adnexa), chronic lymphocytic leukemia, but also rheumatoid factors and non-malignant splenic MZ cells. In conclusion, different MZ lymphomas display biased immunogenetic signatures indicating distinct antigen exposure histories. The existence of rare public stereotypes raises the intriguing possibility that common, pathogen-triggered, immune-mediated mechanisms may result in diverse B lymphoproliferations due to targeting versatile progenitor B cells and/or operating in particular microenvironments. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Genes, Immunoglobulin/genetics , Lymphoma, B-Cell, Marginal Zone/genetics , Complementarity Determining Regions/genetics , Gene Rearrangement, B-Lymphocyte/genetics , Genes, Immunoglobulin Heavy Chain/genetics , Humans , Immunoglobulin Variable Region/genetics , Mutation/genetics , Receptors, Antigen, B-Cell/genetics , Tumor Microenvironment
7.
Mol Cell Proteomics ; 17(4): 776-791, 2018 04.
Article in English | MEDLINE | ID: mdl-29367434

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell cancer exhibiting a wide spectrum of disease courses and treatment responses. Molecular characterization of RNA and DNA from CLL cases has led to the identification of important driver mutations and disease subtypes, but the precise mechanisms of disease progression remain elusive. To further our understanding of CLL biology we performed isobaric labeling and mass spectrometry proteomics on 14 CLL samples, comparing them with B-cells from healthy donors (HDB). Of 8694 identified proteins, ∼6000 were relatively quantitated between all samples (q<0.01). A clear CLL signature, independent of subtype, of 544 significantly overexpressed proteins relative to HDB was identified, highlighting established hallmarks of CLL (e.g. CD5, BCL2, ROR1 and CD23 overexpression). Previously unrecognized surface markers demonstrated overexpression (e.g. CKAP4, PIGR, TMCC3 and CD75) and three of these (LAX1, CLEC17A and ATP2B4) were implicated in B-cell receptor signaling, which plays an important role in CLL pathogenesis. Several other proteins (e.g. Wee1, HMOX1/2, HDAC7 and INPP5F) were identified with significant overexpression that also represent potential targets. Western blotting confirmed overexpression of a selection of these proteins in an independent cohort. mRNA processing machinery were broadly upregulated across the CLL samples. Spliceosome components demonstrated consistent overexpression (p = 1.3 × 10-21) suggesting dysregulation in CLL, independent of SF3B1 mutations. This study highlights the potential of proteomics in the identification of putative CLL therapeutic targets and reveals a subtype-independent protein expression signature in CLL.


Subject(s)
B-Lymphocytes/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Neoplasm Proteins/metabolism , Humans , Proteomics , Spliceosomes
8.
Int J Cancer ; 144(11): 2695-2706, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30447004

ABSTRACT

Chronic lymphocytic leukemia (CLL) stereotyped subsets #6 and #8 include cases expressing unmutated B cell receptor immunoglobulin (BcR IG) (U-CLL). Subset #6 (IGHV1-69/IGKV3-20) is less aggressive compared to subset #8 (IGHV4-39/IGKV1(D)-39) which has the highest risk for Richter's transformation among all CLL. The underlying reasons for this divergent clinical behavior are not fully elucidated. To gain insight into this issue, here we focused on epigenomic signatures and their links with gene expression, particularly investigating genome-wide DNA methylation profiles in subsets #6 and #8 as well as other U-CLL cases not expressing stereotyped BcR IG. We found that subset #8 showed a distinctive DNA methylation profile compared to all other U-CLL cases, including subset #6. Integrated analysis of DNA methylation and gene expression revealed significant correlation for several genes, particularly highlighting a relevant role for the TP63 gene which was hypomethylated and overexpressed in subset #8. This observation was validated by quantitative PCR, which also revealed TP63 mRNA overexpression in additional nonsubset U-CLL cases. BcR stimulation had distinct effects on p63 protein expression, particularly leading to induction in subset #8, accompanied by increased CLL cell survival. This pro-survival effect was also supported by siRNA-mediated downregulation of p63 expression resulting in increased apoptosis. In conclusion, we report that DNA methylation profiles may vary even among CLL patients with similar somatic hypermutation status, supporting a compartmentalized approach to dissecting CLL biology. Furthermore, we highlight p63 as a novel prosurvival factor in CLL, thus identifying another piece of the complex puzzle of clinical aggressiveness.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Apoptosis/genetics , Epigenomics/methods , Female , Gene Expression Profiling/methods , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA, Small Interfering/metabolism , Sequence Analysis, RNA , Transcription Factors/metabolism , Tumor Cells, Cultured , Tumor Suppressor Proteins/metabolism , Up-Regulation
9.
Haematologica ; 104(2): 360-369, 2019 02.
Article in English | MEDLINE | ID: mdl-30262567

ABSTRACT

Chronic lymphocytic leukemia (CLL) patients with differential somatic hypermutation status of the immunoglobulin heavy variable genes, namely mutated or unmutated, display fundamental clinico-biological differences. Considering this, we assessed prognosis separately within mutated (M-CLL) and unmutated (U-CLL) CLL in 3015 patients, hypothesizing that the relative significance of relevant indicators may differ between these two categories. Within Binet A M-CLL patients, besides TP53 abnormalities, trisomy 12 and stereotyped subset #2 membership were equivalently associated with the shortest time-to-first-treatment and a treatment probability at five and ten years after diagnosis of 40% and 55%, respectively; the remaining cases exhibited 5-year and 10-year treatment probability of 12% and 25%, respectively. Within Binet A U-CLL patients, besides TP53 abnormalities, del(11q) and/or SF3B1 mutations were associated with the shortest time-to-first-treatment (5- and 10-year treatment probability: 78% and 98%, respectively); in the remaining cases, males had a significantly worse prognosis than females. In conclusion, the relative weight of indicators that can accurately risk stratify early-stage CLL patients differs depending on the somatic hypermutation status of the immunoglobulin heavy variable genes of each patient. This finding highlights the fact that compartmentalized approaches based on immunogenetic features are necessary to refine and tailor prognostication in CLL.


Subject(s)
Biomarkers, Tumor , Disease Susceptibility , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Aged , Aged, 80 and over , Chromosome Aberrations , Female , Humans , Immunogenetics , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Mutation , Neoplasm Staging , Prognosis , Time-to-Treatment
10.
Blood ; 127(8): 1007-16, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26675346

ABSTRACT

Fludarabine, cyclophosphamide, and rituximab (FCR) is first-line treatment of medically fit chronic lymphocytic leukemia (CLL) patients; however, despite good response rates, many patients eventually relapse. Although recent high-throughput studies have identified novel recurrent genetic lesions in adverse prognostic CLL, the mechanisms leading to relapse after FCR therapy are not completely understood. To gain insight into this issue, we performed whole-exome sequencing of sequential samples from 41 CLL patients who were uniformly treated with FCR but relapsed after a median of 2 years. In addition to mutations with known adverse-prognostic impact (TP53, NOTCH1, ATM, SF3B1, NFKBIE, and BIRC3), a large proportion of cases (19.5%) harbored mutations in RPS15, a gene encoding a component of the 40S ribosomal subunit. Extended screening, totaling 1119 patients, supported a role for RPS15 mutations in aggressive CLL, with one-third of RPS15-mutant cases also carrying TP53 aberrations. In most cases, selection of dominant, relapse-specific subclones was observed over time. However, RPS15 mutations were clonal before treatment and remained stable at relapse. Notably, all RPS15 mutations represented somatic missense variants and resided within a 7 amino-acid, evolutionarily conserved region. We confirmed the recently postulated direct interaction between RPS15 and MDM2/MDMX and transient expression of mutant RPS15 revealed defective regulation of endogenous p53 compared with wild-type RPS15. In summary, we provide novel insights into the heterogeneous genetic landscape of CLL relapsing after FCR treatment and highlight a novel mechanism underlying clinical aggressiveness involving a mutated ribosomal protein, potentially representing an early genetic lesion in CLL pathobiology.


Subject(s)
Drug Resistance, Neoplasm/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation, Missense , Neoplasm Recurrence, Local/genetics , Ribosomal Proteins/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Blotting, Western , Cell Separation , Cyclophosphamide/administration & dosage , DNA Mutational Analysis , Exome , Humans , Immunoprecipitation , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Neoplasm Recurrence, Local/pathology , Rituximab/administration & dosage , Transfection , Tumor Suppressor Protein p53/genetics , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
11.
Brief Bioinform ; 16(3): 380-92, 2015 May.
Article in English | MEDLINE | ID: mdl-25169955

ABSTRACT

Copy number variants (CNVs) play important roles in a number of human diseases and in pharmacogenetics. Powerful methods exist for CNV detection in whole genome sequencing (WGS) data, but such data are costly to obtain. Many disease causal CNVs span or are found in genome coding regions (exons), which makes CNV detection using whole exome sequencing (WES) data attractive. If reliably validated against WGS-based CNVs, exome-derived CNVs have potential applications in a clinical setting. Several algorithms have been developed to exploit exome data for CNV detection and comparisons made to find the most suitable methods for particular data samples. The results are not consistent across studies. Here, we review some of the exome CNV detection methods based on depth of coverage profiles and examine their performance to identify problems contributing to discrepancies in published results. We also present a streamlined strategy that uses a single metric, the likelihood ratio, to compare exome methods, and we demonstrated its utility using the VarScan 2 and eXome Hidden Markov Model (XHMM) programs using paired normal and tumour exome data from chronic lymphocytic leukaemia patients. We use array-based somatic CNV (SCNV) calls as a reference standard to compute prevalence-independent statistics, such as sensitivity, specificity and likelihood ratio, for validation of the exome-derived SCNVs. We also account for factors known to influence the performance of exome read depth methods, such as CNV size and frequency, while comparing our findings with published results.


Subject(s)
Chromosome Mapping/methods , DNA Copy Number Variations/genetics , DNA, Neoplasm/genetics , Exome/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Sequence Analysis, DNA/methods , Algorithms , Base Sequence , Data Interpretation, Statistical , Humans , Molecular Sequence Data , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
12.
Blood ; 125(12): 1922-31, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25612624

ABSTRACT

Splenic marginal zone lymphoma is a rare lymphoma. Loss of 7q31 and somatic mutations affecting the NOTCH2 and KLF2 genes are the commonest genomic aberrations. Epigenetic changes can be pharmacologically reverted; therefore, identification of groups of patients with specific epigenomic alterations might have therapeutic relevance. Here we integrated genome-wide DNA-promoter methylation profiling with gene expression profiling, and clinical and biological variables. An unsupervised clustering analysis of a test series of 98 samples identified 2 clusters with different degrees of promoter methylation. The cluster comprising samples with higher-promoter methylation (High-M) had a poorer overall survival compared with the lower (Low-M) cluster. The prognostic relevance of the High-M phenotype was confirmed in an independent validation set of 36 patients. In the whole series, the High-M phenotype was associated with IGHV1-02 usage, mutations of NOTCH2 gene, 7q31-32 loss, and histologic transformation. In the High-M set, a number of tumor-suppressor genes were methylated and repressed. PRC2 subunit genes and several prosurvival lymphoma genes were unmethylated and overexpressed. A model based on the methylation of 3 genes (CACNB2, HTRA1, KLF4) identified a poorer-outcome patient subset. Exposure of splenic marginal zone lymphoma cell lines to a demethylating agent caused partial reversion of the High-M phenotype and inhibition of proliferation.


Subject(s)
DNA Methylation , Lymphoma, B-Cell, Marginal Zone/genetics , Splenic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Cell Proliferation , Cell Transformation, Neoplastic , Cluster Analysis , DNA Mutational Analysis , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Kruppel-Like Factor 4 , Lymphoma, B-Cell, Marginal Zone/diagnosis , Lymphoma, B-Cell, Marginal Zone/mortality , Male , Middle Aged , Mutation , Phenotype , Prognosis , Promoter Regions, Genetic , Splenic Neoplasms/diagnosis , Splenic Neoplasms/mortality , Treatment Outcome
13.
Blood ; 125(5): 856-9, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25634617

ABSTRACT

An unresolved issue in chronic lymphocytic leukemia (CLL) is whether IGHV3-21 gene usage, in general, or the expression of stereotyped B-cell receptor immunoglobulin defining subset #2 (IGHV3-21/IGLV3-21), in particular, determines outcome for IGHV3-21-utilizing cases. We reappraised this issue in 8593 CLL patients of whom 437 (5%) used the IGHV3-21 gene with 254/437 (58%) classified as subset #2. Within subset #2, immunoglobulin heavy variable (IGHV)-mutated cases predominated, whereas non-subset #2/IGHV3-21 was enriched for IGHV-unmutated cases (P = .002). Subset #2 exhibited significantly shorter time-to-first-treatment (TTFT) compared with non-subset #2/IGHV3-21 (22 vs 60 months, P = .001). No such difference was observed between non-subset #2/IGHV3-21 vs the remaining CLL with similar IGHV mutational status. In conclusion, IGHV3-21 CLL should not be axiomatically considered a homogeneous entity with adverse prognosis, given that only subset #2 emerges as uniformly aggressive, contrasting non-subset #2/IGVH3-21 patients whose prognosis depends on IGHV mutational status as the remaining CLL.


Subject(s)
Gene Expression Regulation, Leukemic , Gene Rearrangement, B-Lymphocyte, Heavy Chain/immunology , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Aged , Antineoplastic Agents/therapeutic use , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Female , Genetic Heterogeneity , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Prognosis , Somatic Hypermutation, Immunoglobulin , Survival Analysis , Time-to-Treatment , Treatment Outcome
14.
Br J Haematol ; 172(2): 228-37, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26457986

ABSTRACT

With 10+ years follow-up in the Leukaemia Research Fund (LRF) CLL4 trial, we report the effect of salvage therapy, and the clinical/biological features of the 10-year survivors treated for chronic lymphocytic leukaemia (CLL). Overall survival (OS) was similar in the three randomized arms. With fludarabine-plus-cyclophosphamide (FC), progression-free survival (PFS) was significantly longer (P < 0.0001), but OS after progression significantly shorter, than in the chlorambucil or fludarabine arms (P < 0.0001). 614/777 patients progressed; 524 received second-line and 260 third-line therapy, with significantly better complete remission (CR) rates compared to first-line in the chlorambucil arm (7% vs. 13% after second-, 18% after third-line), but worse in the FC arm (38% vs. 15% after both second and third-line). OS 10 years after progression was better after a second-line CR versus a partial response (36% vs. 16%) and better with FC-based second-line therapy (including rituximab in 20%) or a stem cell transplant (28%) versus all other treatments (10%, P < 0.0001). The 176 (24%) 10-year survivors tended to be aged <70 years, with a "good risk" prognostic profile, stage A-progressive, achieving at least one CR, with a first-line PFS >3 years and receiving ≤2 lines of treatment. In conclusion, clinical/biological features and salvage treatments both influence the long-term outcome. Second-line therapies that induce a CR can improve OS in CLL patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/blood , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chlorambucil/therapeutic use , Cyclophosphamide/administration & dosage , Disease Progression , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Male , Middle Aged , Prognosis , Remission Induction , Salvage Therapy/methods , Treatment Outcome , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
15.
Br J Haematol ; 174(5): 767-75, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27151266

ABSTRACT

Historically, an increase in the percentage and number of circulating prolymphocytes in chronic lymphocytic leukaemia (CLL) has been associated with strong expression of surface immunoglobulin, trisomy 12 and a poor outcome. This study re-examines the biological and clinical significance of increased peripheral blood prolymphocytes in 508 patients at entry into the randomized UK Leukaemia Research Fund CLL4 trial. It also investigates the associations between increased prolymphocytes and a comprehensive array of biomarkers. 270 patients (53%) had <5% prolymphocytes, 167 (33%) had 5-9%, 60 (12%) had 10-14% and 11 (2%) had ≥15% prolymphocytes. We show that a higher proportion of prolymphocytes (≥10%) was independently associated with NOTCH1 mutations (P = 0·006), absence of 13q deletion (P = 0·001), high CD38 expression (P = 0·02) and unmutated IGHV genes (P = 0·01). Deaths due to Richter syndrome were significantly more common amongst patients who had ≥10% vs <10% prolymphocytes (13% vs 2%) respectively (P < 0·0001). ≥10% prolymphocytes was also associated with a shorter progression-free survival (Hazard ratio [HR] 1·50 [95% confidence interval [CI]: 1·16-1·93], P = 0·002) and overall survival (HR 1·99 [95% CI: 1·53-2·59], P < 0·0001). Our data support the routine examination of blood films in CLL and suggest that a finding of an increased proportion of prolymphocytes may be a trigger for further evaluation of clinical and laboratory features of progressive disease.


Subject(s)
Biomarkers, Tumor/analysis , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphocyte Subsets/pathology , ADP-ribosyl Cyclase 1/analysis , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosomes, Human, Pair 13 , Disease-Free Survival , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Lymphocytes/pathology , Male , Membrane Glycoproteins/analysis , Middle Aged , Mutation , Prognosis , Receptor, Notch1/genetics , Survival Rate
16.
Br J Haematol ; 173(1): 127-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26846718

ABSTRACT

IGHV gene mutational status has prognostic significance in chronic lymphocytic leukaemia (CLL) but the percentage of mutations that correlates best with clinical outcome remains controversial. We initially studied 558 patients from diagnosis and found significant differences in median time to first treatment (TTFT) among Stage A patients and in overall survival (OS) for the whole cohort, between cases with <97% and 97-98·99% identity and between cases with 97-98·99% and ≥99% identity, when cases from the IGHV3-21 Stereotype Subset #2 were excluded. A significant difference in progression-free survival (PFS) and OS between those with <97% and 97-98·99% identity, but not between those with 97-98·99% and ≥99% identity was also observed in a validation cohort comprising 460 patients in the UK CLL4 trial. Cox Regression analyses in the Stage A cohort revealed that a model which incorporated <97%, 97-98·99% and ≥99% identity as subgroups, was a better predictor of TTFT in CLL than using the 98% cut-off. Multivariate analysis selected the three mutational subgroups as independent predictors of TTFT in Stage A patients, and of OS in the diagnostic cohort. This study highlights that cases with 97% identity should not be considered to have the same prognosis as other cases with mutated IGHV genes defined as <98% identity to germline.


Subject(s)
Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Models, Biological , Mutation , Adolescent , Adult , Child , Child, Preschool , Disease-Free Survival , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Survival Rate
17.
Blood ; 133(12): 1269-1270, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30898773
18.
Blood ; 123(8): 1199-206, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24300853

ABSTRACT

The biological and clinical significance of a clonal B-cell lymphocytosis with an immunophenotype consistent with marginal-zone origin (CBL-MZ) is poorly understood. We retrospectively evaluated 102 such cases with no clinical evidence to suggest a concurrent MZ lymphoma. Immunophenotyping revealed a clonal B-cell population with Matutes score ≤2 in all cases; 19/102 were weakly CD5 positive and all 35 cases tested expressed CD49d. Bone marrow biopsy exhibited mostly mixed patterns of small B-lymphocytic infiltration. A total of 48/66 (72.7%) cases had an abnormal karyotype. Immunogenetics revealed overusage of the IGHV4-34 gene and somatic hypermutation in 71/79 (89.8%) IGHV-IGHD-IGHJ gene rearrangements. With a median follow-up of 5 years, 85 cases remain stable (group A), whereas 17 cases (group B) progressed, of whom 15 developed splenomegaly. The clonal B-cell count, degree of marrow infiltration, immunophenotypic, or immunogenetic findings at diagnosis did not distinguish between the 2 groups. However, deletions of chromosome 7q were confined to group A and complex karyotypes were more frequent in group B. Although CBL-MZ may antedate SMZL/SLLU, most cases remain stable over time. These cases, not readily classifiable within the World Heath Organization classification, raise the possibility that CBL-MZ should be considered as a new provisional entity within the spectrum of clonal MZ disorders.


Subject(s)
B-Lymphocytes/pathology , Cell Lineage/immunology , Lymphocytosis/pathology , Lymphoma, B-Cell, Marginal Zone/pathology , Adult , Aged , Aged, 80 and over , Cell Lineage/genetics , Chromosome Banding , Clone Cells/pathology , Disease Progression , Female , Flow Cytometry , Follow-Up Studies , Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics , Gene Rearrangement, B-Lymphocyte, Heavy Chain/immunology , Humans , Immunophenotyping , Lymphocytosis/classification , Lymphocytosis/genetics , Lymphoma, B-Cell, Marginal Zone/classification , Lymphoma, B-Cell, Marginal Zone/genetics , Male , Middle Aged , Retrospective Studies
19.
Haematologica ; 101(8): 959-67, 2016 08.
Article in English | MEDLINE | ID: mdl-27198719

ABSTRACT

We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22-34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s).


Subject(s)
Biomarkers, Tumor , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mutation , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Complementarity Determining Regions/genetics , Cytogenetic Analysis , Female , Gene Frequency , Gene Rearrangement, B-Lymphocyte , Genes, Immunoglobulin , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Joining Region/genetics , Immunoglobulin Variable Region/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Polymorphism, Single Nucleotide , Prognosis
20.
Immunogenetics ; 67(1): 61-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25388851

ABSTRACT

Νext generation sequencing studies in Homo sapiens have identified novel immunoglobulin heavy variable (IGHV) genes and alleles necessitating changes in the international ImMunoGeneTics information system (IMGT) GENE-DB and reference directories of IMGT/V-QUEST. In chronic lymphocytic leukaemia (CLL), the somatic hypermutation (SHM) status of the clonotypic rearranged IGHV gene is strongly associated with patient outcome. Correct determination of this parameter strictly depends on the comparison of the nucleotide sequence of the clonotypic rearranged IGHV gene with that of the closest germline counterpart. Consequently, changes in the reference directories could, in principle, affect the correct interpretation of the IGHV mutational status in CLL. To this end, we analyzed 8066 productive IG heavy chain (IGH) rearrangement sequences from our consortium both before and after the latest update of the IMGT/V-QUEST reference directory. Differences were identified in 405 cases (5 % of the cohort). In 291/405 sequences (71.9 %), changes concerned only the IGHV gene or allele name, whereas a change in the percent germline identity (%GI) was noted in 114/405 (28.1 %) sequences; in 50/114 (43.8 %) sequences, changes in the %GI led to a change in the mutational set. In conclusion, recent changes in the IMGT reference directories affected the interpretation of SHM in a sizeable number of IGH rearrangement sequences from CLL patients. This indicates that both physicians and researchers should consider a re-evaluation of IG sequence data, especially for those IGH rearrangement sequences that, up to date, have a GI close to 98 %, where caution is warranted.


Subject(s)
Complementarity Determining Regions/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Prognosis , Alleles , Amino Acid Sequence/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mutation , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL